أول من وضع علم الجبر واستعمل لفظ الجبر ووضع أصوله و قوانينه هو الخوارزمي أبو عبد الله محمد ولد عام 232 هـ وكتابه في الجبر بعنوان ( المختصر في حساب الجبر والمقابلة. اول من أضاف العدد صفر إلى مجموعة الأعداد 1 ,2 , 3, ..... لتكون الأعداد الطبيعية هو الخوارزمي.أول من توصل لحساب طول السنة الشمسية هو ابو الحسن ثابت بن قرة ولدعام 836 م في حران وهو وثني من عبدة النجوم حدد السنة الشمسية ب 360 يوما و 6 ساعات و 9 دقائق و 10 ثواني. أول من اخترع النسب المثلثية هو أبو جابر البتاني محمد بن سنان الحراني ولد ببتان850 م. أول من أدخل علامة الكسر العشري هو جمشيد بن محمود بن مسعود الملقب بغياث الدين ولد بمدينة كاشان ولذلك يعرف بالكاشي. أول من بيّن طريقة إيجاد الجذر التكعيبي هو أبو الحسن علي بن أحمد النسوي. أول من وضع نظرية الزمر هو الفرنسي إيفاريست غالوا ( 1811 – 1832 م ) أول من اخترع الآلة الحاسبة هو الفرنسي بليز باسكال عام 1642 م لإجراء عمليات الضرب والقسمة بواسطة عجلات تحمل الأرقام 1 -. أوّل من حوّل الكسور العاديّة إلى كسور عشريّة في علم الحساب هو غياث الدين جمشيد الكاشي قبل عام 840 هجرية/1436 م. أوّل من استعمل الأسس السالبة هو العالم المسلم السموأل المغربي ، وهو عالم اشتهر باختصاصه في علم الحساب ، أوّل من استعمل الأسس السالبة في الرياضيات ، وتوفي هذا العالم الفذّ في بغداد عام 1175م . أوّل من استخدم الجذر التربيعي هو العالم المسلم الرياضي محمد بن موسى الخوارزمي، وأوّل من استعمله للأغراض الحسابية هو العالم أبو الحسن علي بن محمد القلصادي الأندلسي الذي ولد عام 825 هجرية وتوفي سنة 891 هجرية وانتشر هذا الرمز في مختلف لغات العالم. أوّل من وضع أسس علم الجبر هو العالم المسلم أبو الحسن محمد بن موسى الخوارزمي ، ولد هذا العبقري الفذّ في بلدة خوارزم بإقليم تركستان في العام 164 هجرية، برع في علم الحساب ووضع فيه كتاباً له أسماه (الجبر والمقابلة) شرح فيه قواعد وأسس هذا العلم العام ،تحرف اسمه عند الأوروبيين فأطلقوا عليه (ALGEBRA) أي علم الحساب ، وتوفي –رحمه الله –عام 235 هجرية. أوّل من أسس علم حساب المثلثات هم الفراعنة القدماء عرفوا حساب المثلثات وساعدهم ذلك على بناء الأهرامات الثلاثة،وظل علم حساب المثلثات نوعاً من أنواع الهندسة ،حتى جاء العرب المسلمون وطوروه ووضعوا الأسس الحديثة له لجعله علماً مستقلاً بذاته ،وكان من أوائل المؤسسين لحساب المثلثات ،أبو عبد الله البتاني والزرقلي ونصير الدين الطوسي. أوّل من استعمل الرموز أو المجاهيل في علم الرياضيات هم العرب المسلمون ، فاستعملوا (س) للمجهول الأول ، و (ص) للثاني و (ج) للمعادلات للجذر .. وهكذا. أوّل رسالة عن علم الرياضيات طبعت في أوروبا كانت مأخوذة من جداول العالم المسلم أبي عبد الله البتاني ،وقد طبعت هذه الرسالة الأولى عام 1493م في اليونان. أوّل من أدخل الأرقام الهندية إلى العربية هو أبو عبد الله محمد بن موسى الخوارزمي عالم الرياضيات والأرقام التي نستعملها اليوم في كتابة الأعداد العربية 1،2،3،4،5،… الخ هي أرقام دخيلة استعملها الهنود من قبل العرب بقرون طويلة.أوّل معداد يدوي اخترعه الصينيون واستعانوا به على إجراء العمليات الحسابية وذلك في العام 1000 قبل الميلاد وسموه ( الأبوكس ). أوّل حاسوب إلكتروني يعمل بالكهرباء تم اختراعه في عام 1946م بالولايات المتحدة الأمريكية ، وأطلق عليه اسم (إنياك:Eniac ) ، وهو من حواسيب الجيل الأوّل التي تعمل بالصمامات المفرغة وتستهلك قدراً كبيراً من الكهرباء ، وهي تشمل مساحة كبيرة. أول من اكتشف الدائرة منذ عام 500 ق.م هم المصريون القدماء.أول من توصل لقانون حساب مساحة الدائرة = ط نق2 هو العالم المصري أحمس.أول من ابتدع النظام العشري في العد هم المصريون القدماء.أول من أعطي قيمة صحيحة للنسبة التقريبية هو غياث الدين الكاشي.
الخميس، 23 يوليو 2009
تعريف الرقم والعدد
الرقم والأرقام ليست عدداً أو أعداداً وإنما هي أشكال تكتب بها رموز الأعداد، والأرقام محدودة وعددها عشرة وهي 9-8-7-6-5-4-3-2-1- 0 لكن الأعداد لا ينتهي عدها – أي ليس لها آخر – فلا يوجد عدد نقول عنه أكبرالأعداد قاطبة. فرمز العدد سبعة يتكون من رقم واحد هو 7. ورمز العدد سبعة وعشرين يتكون من رقمين هما الرقم 7، والرقم 2 . في عملياتنا الحسابية لا نقول – الرقم 27 – بل نقول – العدد 27 – وهذا يعني العدد الذي رمزه 27. كما أننا نجد أحياناً تعبيراً كالآتي – مجموع أرقام العدد 527 يساوي 14 – ليعني – مجموع الأعداد التي رموزها أرقام العدد527 يساوي 7+2+5 = 14، وهذا التعبير فيه تجاوز يسمح به للتسهيل وسوف نتبعه في هذا الموقع. وعليه فالرقم يشير إلى عدد من الأعداد، ومن المعتقد أن الأرقام العربية والأعداد الرومانية ترجع هيئتها إلى استعمال أصابع اليد. والعدد يشير إلى تعداد بضعة أشياء أو مجموعها، أو إلى مواقعها في قائمة مرتبة . وتقوم الرياضيات الحديثة والتي نعيش جميعنا في ظلها الآن على مفهوم العدد، والعدد الكامل بصورة خاصة.وهكذا صارت لدينا الأعداد العقلانية التي تكتب على شكل كسور، وهناك الأعداد اللاعقلانية، والأعداد المركبة، والأعداد المفرطة في تعقدها والأعداد الكاترينيونية .... إلخ . وعلى هذا النحو يتحول الحساب إلى ميدان وأوسع منه بكثير ميدان الجبر الذي يدرس كل الأعداد والعلاقات العامة فيما بينها . من الإعجاز العددي في القرآن الكريم ما ثبت من الدراسات القرآنية أن كل لفظ ورد في القرآن بقدر محدود ومقصود، ولحكمة يعلمها الله تعالى . فبعض الألفاظ تأتي ضعف نقيضها أو تتناسب مع غيرها الذي يؤدي المعنى نفسه، فمثلاً : تكرر لفظ الدنيا 115 مرة تكرار لفظ الآخرة، وتكرر ذكر الشياطين 88 مرة وهو عدد مرات ذكر الملائكة، وتساوى عدد مرات ذكر المحبة بعدد مرات ذكر الطاعة 83 مرة، وتكرر ذكر الشدة مثل الصبر، كل منها تكرر 103 مرات، بينما تكررت المغفرة 234 مرة أي ضعف الجزاء الذي تكرر 117 مرة، وكذلك تكرر ذكر الرحيم سبحانه وتعالى 114 بعدد سور القرآن الكريم . وضع إخوان الصفاء صورة كاملة للعالم بنيت على الأرقام من 1 إلى 9، إذ العشرة عودة إلى الصفر في نظرهم . لكل عدد من الأعداد التسعة الأولى علامة يعرف بها، وعلامات الأعداد تدعى أرقاماً وتكتب الأعداد بواسطتها . أما الصفر فيدل على فراغ أو على لا شيء، وهو لا قيمة له إلا إذا أسند إلى عدد . الأعداد الأولى تدعى أعداداً بسيطة لأن كلاً منها يتألف من رقم واحد ويعبر عنه بكلمة واحدة . والأعداد الأصلية هي 1، 2، 3، .... إلخ، تمييزاً لها عن الأعداد الترتيبية أي الأول والثاني والثالث ..... إلخ . والعدادة دراسة لمعاني الأعداد السحرية أو التنجيمية . أسهم العرب في الرياضيات بنقل علم الحساب الإغريقي وتبسيطه وجعله أداة طيعة للاستعمال اليومي عن طريق اصطناع الأرقام العربية والنظام العشري واختراع علم الجبر في مفهومه المعروف في العصور الحديثة ووضع أسس حساب المثلثات وبخاصة الكروية منها . خواص الأعداد العدد 1 هو أصل العدد ومنشأه وهو يعد العدد كله ، الأزواج والأفراد جميعاً. العدد 2 هو أول العدد مطلقاً وهو يعد نصف العدد الأزواج دون الأفراد . العدد 3 هو أول عدد الأفراد وهو يعد ثلث الأعداد وتارة الأفراد وتارة الأزواج. العدد 4 هو أول عدد مجذور – أي تربيع . العدد 5 هو أول عدد دائري ويقال كروي . العدد 6 هو أول عدد تام . العدد 7 هو أول عدد كامل . العدد 8 هو أول عدد مكعب . العدد 9 هو أول عدد فرد مجذور – وإنه آخر مرتبة الآحاد . العدد 10 هو أول مرتبة العشرات . العدد 11 هو أول عدد أصم . العدد 12 هو أول عدد زائد . أصل الأرقام وتاريخهاحاول أحد الباحثين إعادة التنقيب عن الأصل الحقيقي للأرقام، فرأى أن الأبجدية الفينيقية هي أصل الأرقام، ثم أخذت هذه الأرقام في التحسن. وتطورت الأرقام من الشكل المعروف في العصر الجاهلي إلى السياق ثم الغبار ثم اختزلت الحروف في عهد الوليد بن عبد الملك . وأصل التسمية - الغبار – لا يرجع كما يقول بعضهم إلى نشر الدقيق أو الرمل والكتابة فوقه , وإنما هو مشتق من غبر بمعنى مضى، ولهذا يسمى خط الغبار أو خط الجناح .وفي العهد الفاطمي ابتكر الوضع العمودي للأرقام بعد أن كان أفقياً يأخذ حيزاً مما يعوق الحساب. والخط الغباري هو المستعمل في المغرب العربي.[img]http://7odi.com/up//thumbs/46fb4481cd.bmp[/img]والخط السياقي هو المستعمل في المشرق العربي ويسميه القلقشندي الخط الهندي وأيضاً الأرقام الهوائية وهي الأرقام التي تستعمل حالياً في كافة منطقة الخليج والجزيرة العربية، وهو خط عربي أصيل كما يوضح المويلحي . [img]http://7odi.com/up//thumbs/0c3585884d.bmp[/img]أما الصفر، فهو الشيء الخالي، ورمز له بحرف الصاد، وهو كالحلقة الصغيرة، والصفر بكسر الصاد وسكون الفاء في اللغة هو الشيء الخالي. كما يذكر في التاريخ أنه قدم إلى بلاط الخليفة المأمون عام 772 م فلكي من الهند اسمه كنكه يحمل معه كتاباً لمؤلفه براهما جوبتا ، أمر المنصور بترجمته إلى العربية ، تحت عنوان سند هند، ومن هذا الكتاب عرف العرب نظام الأرقام والأعداد الهندية. وشرح الخوارزمي في كتاب له طريقة استخدام نظام الأعداد والأرقام الهندية ، وترجم كتابه إلى الأسبانية واللاتينية في القرن الثاني عشر الميلادي، وبذلك علم الخوارزمي الغرب كتابة الأرقام والأعداد والحساب. والجدير بالذكر أن الخوارزمي هو أول من استعمل كلمة الجبر، كما استعمل الحروف مكان الأرقام، واستعان بالمعادلات الجبرية المتنوعة لحل المسائل الحسابية. كما أنه أظهر للأرقام قيمتها ، ولولاه لبقيت الأرقام رموزاً مفردة لا قيمة عملية لها. وقد نقل عنه الأوربيون قيمة الأرقام وسموها – ألغورثموس . والصفر كذلك من الأرقام، وقد أخذه الأوربيون من الخوارزمي باسمه العربي، وكان الإنكليز يلفظونه – صايفر . كما عرف الخوارزمي الأعداد السالبة وجعلها في معادلاته، وتنبه إلى الكميات التخيلية. ولولا الصفر لما استطعنا حل كثير من المعادلات الرياضية بسهولة ، ولما تقدمت فروع الرياضيات التقدم الذي نشهده اليوم. وأول من أدرك قيمة الصفر في الحساب كان الخوارزمي . وقد ذكر أبو الريحان البيروني أن صور الحروف وأرقام الحساب تختلف في الهند باختلاف المحلات، وأن العرب أخذوا أحسن ما عندهم وهذبوا بعضها وكونوا من ذلك سلسلتين عرفت إحداهما بالأرقام الهندية، وهي التي تستعملها أكثر الأقطار الإسلامية والعربية – المشرق العربي ومصر والسودان – وعرفت الثانية بالأرقام الغبارية، وقد انتشر استعمالها في بلاد المغرب والأندلس، وعن طريقها دخلت إلى أوربا باسم الأرقام العربية . وهكذا فكلا الصورتين الهندية – وهي المشرقية ، والغبارية – وهي المغربية، ما هي إلا ابتكارات عربية. وفي الواقع، وصلت الأرقام العربية إلى الأوربيين عام 800 م، وكانت قد وصلت إلى العرب من الهند عام 600 م .وعليه فقد وجدت الأعداد الهندية الحالية، وأعداد المشرق العربي – خط هوائي – والأعداد المستعملة في المغرب العربي – خط غباري – والأعداد الأوربية المقتبسة من العربية، والأعداد الأوربية الحديثة، وأعداد الكمبيوتر. كما أنه توجد أرقام كتبتها حضارات عديدة من المسمارية، والمصرية، والإغريقية، والرومانية – كان الرومان يرمزون إلى الأرقام بسبعة أحرف وهي : - واحد I – خمسة V - عشرة X – خمسون L – مئة C – خمسمئة D – ولا تزال تستعمل إلى يومنا هذا، وأيضاً أرقام المايا، والأرقام الصينية . الأنظمة الشائعة للأعدادالنظام العشري: النظام العشري هو استعمال العدد – 10 – كأساس للعد والعمليات المختلفة على الأعداد، ومن المعتقد أنه بدئ بالعد على الأصابع في أوائل الحضارات، واستعمال اليدين باعتبارهما عدادا مريحاً. ولقد حاول الإنسان منذ القدم أن يعرف العدد، فاعتمد البابليون والآشوريون النظام الستيني، واعتمدت الكسور على أساس هذا النظام، كما نفعل اليوم في قياس الزمن، حيث نقسمه إلى ساعات وقد استعمل الهنود النظام العشري في الحساب والترقيم، وجاء المسلمون وأخذوا بالحساب العشري، وذلك لأن القرآن الكريم ذكر الحساب في بعض آياته – والفجر وليال عشر - ... – من جاء بالحسنة فله عشر أمثالها - .... إلخ ، وتوجد إشارة لطيفة إلى اتخاذ العشرة الكاملة كمقياس وذلك من الآية – تلك عشرة كاملة – والآية – قل فأتوا بعشر سور مثله – والآية – ما بلغوا معشار ما آتيناهم - .... إلخ . وهكذا يعطي القرآن الكريم العدد عشرة ومضاعفاته أكبر وزن ، كل ذلك أنزل في زمن لم يقدر فيه أحد بعد الحساب العشري أو قيمته . وقد طبق النظام العشري على معظم العملات المختلفة . وتؤكد الدراسات أن التحويل إلى النظام العشري في حساب الوقت سوف يصبح ضرورة حتمية في السنوات القادمة لكي نواجه مقتضيات العصر، وذلك باعتبار اليوم 10 ساعات، والساعة 100 دقيقة، والدقيقة 100 ثانية، وقد حاولت الثورة الفرنسية تغيير النظام الستيني من باب العناء للكنيسة الكاثوليكية إلى النظام العشري ولكن ألغي بعد سنوات . وجمشيد أول من أدخل علامة الكسر العشري في علميات الحساب وله أعماله الخالدة في موضوع الحساب العشري . النظام الثنائي : وهو نظام يستخدم الرمزين 0 و 1 – الأساس = 2 ..... وهذا النظام يستعمل في صناعة الأجهزة الإلكترونية مثل الكمبيوتراتثنائي عشري ثنائي عشري ثنائي عشري ثنائي عشري1100 12 1000 8 100 4 0 01101 13 1001 9 101 5 1 11110 14 1010 10 110 6 10 21111 15 1011 11 111 7 11 310000 16 - - - - - -وهو نظام يقوم على النظرية 2 / 1011011 = 91 في النظام العشري . .حساب الجمل وهو حساب الأحرف الهجائية المقروءة من الواحد إلى الألف ... - وهي طريقة يستعملها المنجمون لقراءة الطالع خاصة وعمل الأحجبة والأعمال السحرية - ونستبدل فيها الحروف بالأرقام – عمل علماء الفلك العرب عكس ذلك فاستخدموا الأرقام بالحروف في الزيجات والحسابات – وإليك بيان ذلكقيمة الحرف الحرف قيمة الحرف الحرف قيمة الحرف الحرف قبمة الحرف الحرف400 ت 60 س 8 ح 1 أ500 ث 70 ع 9 ط 2 ب600 خ 80 ف 10 ي 3 ج700 ذ 90 ص 20 ك 4 د800 ض 100 ق 30 ل 5 ه900 ظ 200 ر 40 م 6 و1000 غ 300 ش 50 ن 7 زومثال لذلك – شمط = ش + م + ط = 300 + 40 + 9 = 349 وكذلك يستعمل هذا الحساب للدلالة على تاريخ حدث معين كالولادة والوفاة أو تشييد بناء كالمساجد والقصور .
تواريخ مهمة في الرياضيات
3000 ق.ماستخدم قدماء المصريين النظام العشري. وطوروا كذلك الهندسة وتقنيات مساحة الأراضي. 370 ق.معرف إيودكسس الكندوسي طريقة الاستنفاد, التي مهدت لحساب التكامل. 300 ق.مأنشأ إقليدس نظاماً هندسياً مستخدماً الاستنتاج المنطقي. 787 مظهرت الأرقام والصفر المرسوم على هيئة نقطة في مؤلفات عربية قبل أن تظهر في الكتب الهندية. 830 مأطلق العرب على علم الجبر هذا الاسم لأول مرة. 835 ماستخدم الخوارزمي مصطلح الأصم لأول مرة للإشارة لعدد الذي لا جذر له. 888 موضع الرياضيون العرب أولى لبنات الهندسة التحليلية بالاستعانة بالهندسة في حل المعادلات الجبرية. 912 ماستعمل البتاني الجيب بدلا من وتر ضعف القوس في قياس الزاويا لأول مرة. 1029 ماستغل الرياضيون العرب الهندسة المستوية والمجسمة في بحوث الضوء لأول مرة في التاريخ. 1142 مترجم أيلارد - من باث - من العربية الأجزاء الخمسة عشر من كتاب العناصر لأقليدس, ونتيجة لذلك أضحت أعمال أقليدس معروفة جيداً في أوروبا. منتصف القرن الثاني عشر الميلادي.أدخل نظام الأعداد الهندية - العربية إلى أوروبا نتيجة لترجمة كتاب الخوارزمي في الحساب. 1252 ملفت نصير الدين الطوسي الانتباه - لأول مرة - لأخطاء أقليدس في المتوازيات. 1397 ماخترع غياث الدين الكاشي الكسور العشرية. 1465 موضع القلصادي أبو الحسن القرشي لأول مرة رموزاً لعلم الجبر بدلاً عن الكلمات 1514 ماستخدم عالم الرياضيات الهولندي فاندر هوكي اشارتي الجمع (+) ةالطرح (-) لأول مرة في الصيغ الجبرية. 1533 مأسس عالم الرياضيات الألماني ريجيومونتانوس, حساب المثلث كفرع مستقل عن الفلك. 1542 مألف جيرولامو كاردانو أول كتاب في الرياضيات الحديثة. 1557 مأدخل روبرت ركورد إشارة المساواة (=) في الرياضيات معتقد أنه لا يوجد شيئ يمكن ان يكون أكثر مساواة من زوج من الخطوط المتوازية. 1614 منشر جون نابيير اكتشافه في اللوغاريتمات, التي تساعد في تبسيط الحسابات 1637 منشر رينيه ديكارت اكتشافه في الهندسة التحليلية, مقرراً أن الرياضيات هي النموذج الأمثل للتعليل. منتصف العقد التاسع للقرن السابع عشر الميلادي.نشر كل من السير إسحق نيوتن وجوتفريد ولهلم ليبنتز بصورة مستقلة اكتشافاتهما في حساب التفاصيل والتكامل. 1717 مقام أبراهام شارب بحساب قيمة النسبة التقريبية حتى 72 منزلة عشرية. 1742 موضع كريستين جولدباخ ما عرف بحدسية جولدباخ: وهو أن كل عدد زوجي هو مجموع عددين أوليين. ولا تزال هذه الجملة مفتوحة لعلماء الرياضيات لإثبات صحتها أو خطئها. 1763 مأدخل جسبارت مونيي الهندسة الوصفية وقد كان حتى عام 1795 م يعمل في الاستخبارات العسكرية الفرنسية. بداية القرن التاسع عشر الميلادي.عمل علماء الرياضيات كارل فريدريك جوس ويانوس بولياي, نقولا لوباشيفسكي, وبشكل مستقل على تطوير هندسات لا إقليدية. بداية العقد الثالث من القرن التاسع عشر.بدأ تشارلز بباج في تطوير الألات الحاسبة. 1822 مأدخل جين بابتست فورييه تحليل فورييه. 1829 مأخل إفاريست جالوا نظرية الزمر. 1854 منشر جورج بولي نظامه في المنطق الرمزي. 1881 مأدخل جوشياه ويلارد جبس تحليل المتجهات في ثلاثة أبعاد. أواخر القرن التاسع عشر الميلادي.طور جورج كانتور نظرية المجموعات والنظرية الرياضية للمالانهاية 1908 مطور إرنست زيرميلو طريقة المسلمات لنظرية المجموعات مستخدماً عبارتين غير معروفتين وسبع مسلمات 1910 - 1913 منشر ألفرد نورث وايتهيد وبرتراند رسل كتابهما مبادئ الرياضيات وجادلا فبه أن كل الفرضيات الرياضية يمكن استنباطها من عدد قليل من المسلمات. 1912 مبدأ ل. ي. ج. برلور الحركة الحدسية في الرياضيات باعتبار الأعداد الطبيعية الأساس في البنية الرياضية التي يمكن إدراكها حدسياً. 1921 منشر إيمي نوذر طريقة المسلمات للجبر. بداية الثلاثينيات من القرن العشرين الميلادي.أثبت كورت جودل ان أي نظام من المسلملت يحوي جملاً لا يمكن إثباتها. 1937 مقدم ألان تورنج وصفا لـ "آلة تورنج" وهي حاسوب آلي تخيلي يمكن أن يقوم بحل جميع المسائل ذات الصبغة الحسابية. مع نهاية الخمسينيات وعام 1960 مدخلت الرياضيات الحديثة إلى المدارس في عدة دول 1974 مطور روجر بنروز تبليطة مكونة من نوعين من المعينات غير متكررة الأنماط. واكتشف فيما بعد أن هذه التبليطات التي تدعي تبليطات بنروز تعكس بنية نوع جديد من المادة المتبلورة وشبه المتبلورة. سبعينيات القرن العشرينظهرت الحواسيب المبنية على أسس رياضية, واستخدمت في التجارة والصناعة والعلوم. 1980 مبحث عدد من علماء الرياضيات المنحنيات الفراكتلية, وهي بنية يمكن استخدامها لتمثيل الظاهرة الهيولية
تطور الهندسة عبر العصور
تطور الهندسة عبر العصورالهندسة هي من الفروع الأكثر قدما في الرياضيات. إن أصل كلمة « Géométrie» يعود إلى اليونان. والكلمة مكونة من جزأين: « Géo » الصادر من « Gaia » ويعني الأرض، و « Métrie » الصادر من « Métron » ويعني قياس. فالهندسة تعني إذن عند اليونان "قياس الأرض". وتعرف عادة كعلم أشكال الفضاء. وقد ساعدت احتياجات الأفراد من تطورها.
الهندسة قبل اليونان (بين 4000و2000 قبل الميلاد) يعرف عن حضارات تلك الحقبة بأنها كانت تستعمل المساطر (جمع مسطرة) لقياس الأطوال والمساحات والأحجام. وكانت رسوماتها تشمل أشكالا هندسية طابعها المميز هو التناظر. كان البابليون والمصريون القدماء يهتمون بالمسائل ذات الطابع القياسي دون أن يولوا اهتماما لبرهان الدساتير المستعملة وإنما يستثمرونها كوسائل حسابية فقط. فمثلا استعمل البابليون دساتير مضبوطة لحساب مساحة مثلث، وحجم موشور قائم. وكانوا يعرفون المضلعات المنتظمة وإمكانية رسمها داخل الدائرة. أما المصريون فقد كانت لهم كذلك دساتير مضبوطة تتعلق بمساحة مثلث وشبه منحرف متساوي الساقين وحجم جذع هرمي. وكانوا يملكون تقريبا جيدا للعدد π. يبدو أن مفهومي التشابه والتناسب كانا معروفين. الهندسة عند اليونانيين (ابتداء من القرن 6 قبل الميلاد) أخذ اليونانيون من الحضارات القديمة معارف رياضية وفلكية عديدة. وكان لهم الفضل في تحويل هذا الإرث الحضاري إلى علم استنتاجي بحيث استخدمت مفاهيم البرهان والنظرية والتعريفوالبديهية لتعوضالطابع التجريبي للرياضيات المستعملة من قبل سابقيهم. كما كان لهم الفضل في جعل الهندسة تأخذ طابععلم الفضاء. ووظفوا الاستدلال على الأشكال. كان شعار المدرسة الفيثاغورثية (نسبة إلى Pythagore حوالي 560 – 480 قبل الميلاد) "كل شيء هو عدد". وينسب إليها برهان نظريتها الشهيرة، وكذلك إنشاء الأجسام المنتظمة، والبدء باستعمال الأعدادالصماء. كانت هناك دلائل على إدخال التفكير الفلسفي والمنطقي للهندسة في عهد Platon (حوالي 427 – 348) و Aristote (حوالي 384 – 322). لقد أثر كتاب العناصر(أو الأصول) لمؤلفه Euclid(حوالي 300 قبل الميلاد) في الرياضيين مدة قرون عديدة لما شمله من تجديد نتيجة الاهتمامات المنطقية للمؤلف. وقد أدى ذلك إلى هيمنة الهندسة الاقليدية حتى القرن 18 ميلادية. كما كانت مساهمة العديد منالرياضيين اليونانيين ( منهم Ptolénée, Ménélaus, Aratosthène, Apollonius, Archiméde, Thalès ) هامة ليست فقط في الهندسة، بل في شتى فروع الرياضيات الأخرى. الهندسة في القرون الوسطى (حوالي القرن 5 والقرن15 ميلادية) لقد تم استلام المشعل الحضاري من طرف بغداد نتيجة ترجمة العلوم اليونانية من طرف العرب والمسلمين. وبالتالي دخلت العلوم الرياضية في إطار الحضارة والثقافة العربية الإسلامية. إذ لم يكتف العلماء (القاطنين في بيت الحكمة-بغداد حوالي القرن 8 ميلادية) بترجمة العلوم الرياضية فقط، بل كذلك النصوص الإدارية والفلسفية. وكان كتاب الأصول لاقليدس مرجعا أساسيا. كما أن الإنشاءات الهندسية لم تكن مجرد وصفات، بل براهين هندسية حقيقية مبررة بتطبيقات عملية. فطوال حقبة الرياضيات العربية الإسلامية، تمت دراسة العديد من مشاكل الإنشاءات الهندسية: فأبو الوفاء (حوالي 940 – 998 ميلادية) مثلا، عمل في العديد من الإنشاءات مستعملا المسطرة والمدور. وكانت له طرق خاصة ومبتكرة لكيفية الرسم واستعمال الآلات. كما أن البيروني (حوالي 973 – 1048 ميلادية) حذا حذوه كذلك. إن دراسة المثلث المستوي والمثلث الكروي هي في قلب الرياضيات العربة الإسلامية. كما أن حساب المثلثات قد تطور تبعا لاحتياجات علم الفلك. دخلت علوم العرب المسلمين إلى أوروبا في نهاية القرن 10 ميلادية. وابتداء من القرن 13 ميلادية ظهرت النصوص العربية المترجمة خاصة ما يتعلق بالجبر وحساب المثلثات. وفي نهاية القرون المتوسطة، أخذت الهندسة توجهات جديدة بفضل اكتشاف مبادئ الهندسة الاسقاطية والهندسة الوصفية،وبفضل ظهور الهندسة التحليلية.
الهندسة التحليلية يرتبط بالهندسة التحليلية ثلاث عوامل: 1. التعبير عن الحقيقة الهندسية بعلاقة بين كميات متغيرة. 2. استعمال الإحداثيات. 3. مبدأ التمثيل البياني. بفضل طريقة "الإحداثيات" تم إرجاع المشكل في الهندسة المستوية إلى مشكل مكافئ في الجبر. كما أكتمل التطور فيما يتعلق بالترميز الجبري تحت تأثير Diophante (القرن3) و de Viète و Stevin (القرن 16) مما أدى إلى ترجمة أفضل لهذه المشاكل.يمكن اعتبار كذلك أن الهندسة التحليلية قد أنشئت بشكل متواز اعتمادا على Descartes (1596-1650) و Fermat (1601-1665) رغم أن الكثير من عناصرها المميزة كانت معروفة من قبل. إن الهندسة التحليلية كما نعرفها حاليا، لم تظهر إلا في القرن 18. لقد امتدت من المستوي إلى الفضاء لما اقترحت معادلة الكرة (القرن 17م). كما أن Euler نص على مبدأ التكافؤ بين محوري الإحداثيات في المستوي. وثبت Lagrange معادلتي المستقيم والمستوي حوالي 1770، وافتتح الاستعمال المنهجي لثلاث محاور إحداثية. أما Monge (1746-1818) فقد ثبت معادلات مختلف السطوح الجبرية، وحل العديد من المشاكل بطريقة تحليلية. في القرن 19 أدت الطبيعة الكيفية لاختيار محاور الإحداثيات إلى دراسة ثوابت عند تغيير الإحداثيات مما سمح بالتعبير عن الخواص الأصلية للأشكال الهندسية. هذه الدراسة كانت سببا في تطور مفاهيم الأشعة والتنسورات المستعملة ليست فقط في الرياضيات بل في مواد أخرى كذلك.
الهندسه الاسقاطيةاهتم الفنانون في عصر النهضة بتقديم أشكال الفضاء على المستوي ابتداء من نقطة رؤية العين. وبفضل Monge (1746-1818) ظهرت الهندسة الوصفية حيث اعتمد إطارها النظري على مفهوم المسقط العمودي، وسمحت طريقتها بتقديم شكل فضائي باستعمال مساقط عمودية من هذا الشكل على مستويين متعامدين. لقد أكمل العمل Pocelet (1788-1867) حيث أظهر خاصيتين للأشكال: الخواص المترية (التابعة للمقادير). الخواص الوصفية (التابعة للأشكال والوضعيات). لكن نقص الهندسة الاسقاطية يتمثل في التمييز بين هذين النوعين من الخواص. إلا أن أعمال Hilbert و Darboux(في نهاية القرن 19 وبداية القرن 20) سمحت بإرساء أسس بديهية لهذه الهندسة وبشكل دقيق. فعلى سبيل المثال أعطى Klein (1849-1925) تعريفا يسمح بتمييز كل هندسة وبالتالي تتميز الهندسة الاقليدية بدراسة الخواص اللامتغيرة عن طريق زمرة من التحويلات معطاة. أما Hilbert (1862-1943) فقد نشر نظاما بديهيا كاملا للهندسة إلاقليدية. مما سبق، نجد أن معنى الإسقاط كان محصورا بالمساقط المركزية المقامة على مستقيم أو مستوي. وتتميز الهندسة الاسقاطية بدراسة خواص الأشكال المحفوظة بكل تحويل خطي للمستقيم أو المستوي أو الفضاء. إنها تؤثر على أشكال الفضاء بتقديم عناصر مثالية: عناصر تخيلية أو في اللانهاية. إنها العامل الأساسي في تحريك أفكار القرن 21 الحالي فيما يخص تقريب الهندسات بعضها البعض، وإعطاء مفهوم التحويل الهندسي دورا راجحا.
الهندسة اللااقليدية إن مصادرة "التوازي"لاقليدس: من نقطة معطاة يمر منها مواز واحد لمستقيم معطى، كانت محل نقاش منذ القدم. الكثير من الرياضيين حاولوا برهانها دون نجاح. لكن في القرن 18 وبالضبط في عامي 1733، 1770 قدم على التوالي كل من Saccheri و Lambert طريقة للبرهان هي الاستدلال بالخلف. وكانا يعتقدان بأن نفي المصادرة سيسمح لهما بالحصول على نتائج متناقضة. لكن هذا لم يحصل مما عزز الاعتقاد بأن نظريات اقليدس مستقلة عن هذه المصادرة. في بداية القرن 19، أصبح الكثير من الرياضيين مقتنعين بأنه لا يمكن البرهان على هذه المصادرة، وعليه فالهندسة الاقليدية ليست الوحيدة منسجمة منطقيا. لقد كان Gauss (1777-1855) أول من قدم فكرة إمكانية إنشاء هندسة لا تعتمد على مصادرة اقليدس. ثم بعد فترة ليست بالطويلة وضح بشكل مستقل كل من Lobatchevski (1793-1856) و Bolyai (1802-1862) نتائج غاوص بتعريفهما لهندسة لااقليدية سميت هندسة زائدية: من نقطة خارج مستقيم يمر عدد لانهائي من المستقيمات الموازية له. لقد عرف Rieman (1826-1866) هندسة لااقليدية أخرى سميت بهندسة ناقصية: من نقطة خارج مستقيم لا يمر أي مواز له. هذه الاكتشافات بقيت مجهولة حتى سنة 1860 حيث بفضل تأثير الهندسة التفاضلية والأعمال المتعلقة بمساحة الأرض والفلك، أصبحنا نعرف أفضل هذه الهندسات، كما اعتبرت كجزء من الرياضيات. وأكثر من هذا، أصبحنا بفضلها نفهم أكثر الهندسة الاقليدية، كما أصبحت فيما بعد مصدرا لتطبيقات هامة مثل التي نتجت عن النظرية النسبية (المنسوبة إلى Einstein ). قد يطرح مشكل جديد يتمثل في نوع العلاقات الموجودة بين الهندسة الاقليدية والهندسة الاسقاطية والهندسة اللااقليدية. إن مفهوم التحويل الهندسي قد يسمح بحل هذا المشكل.
التحويلات الهندسية عندما تكلم اقليدس عن تساوي مثلثين، كان الاعتقاد بأنه قصد التطابق بينهما. لكن الإزاحة (الانتقال من وضعية ابتدائية إلى وضعية نهائية بدون أخذ بعين الاعتبار للوضعيات الوسيطية) لم تكن مدروسة كموضوع رياضي إلا في القرن 18 عن طريق Euler(1707-1783) الذي فكر كذلك في مركب إزاحتين. لقد تم إدخال المسقط المركزي في دراسة التحويلات النقطية من طرف Desargues ثم Pascal، لكن هذا المفهوم لم يأخذ الانطلاقة إلا بعد نهاية القرن 18 حيث عرف ِChasles التحويل الاسقاطي بأكثر عمومية. وتمت دراسة التآلف والدوران والتناظر والانسحاب والتحاكي. عند منتصف القرن 19 ظهرت فكرة ترتيب الخواص الهندسية حسب التحويلات التي تجعل هذه الخواص لامتغيرة. كما أن كل نمط من التحويل يرفق بهندسة. لقد بدأت تظهر الروابط بين الجبر والهندسة بفضل رياضيين اهتموا بدراسة التحليل والجبر. كمثال على ذلك، نجد أن Cayley (1821-1895) قد أخذ بعين الاعتبار للجوانب اللامتغيرة، وأثناء عمله في موضوع المسافة، أقام علاقات بين الهندسة الاسقاطية والهندسة الاقليدية مما سمح فيما بعد بتحديد الربط بين الخواص المترية والاسقاطية. لقد أصبحت كلا من الهندسة الاقليدية واللااقليدية كحالة خاصة من الهندسة الاسقاطية. لقد أثبت Klein (1849–1925) أن الهندسة الاسقاطية العامة لا تدخل في نطاقها مصادرة التوازي الأمر الذي لم يعمل به أحد من قبل. ووضح دور التحويلات النقطية بإرفاقها بمفهوم الزمرة التي قدمها الرياضي Galois سنة 1830 ونشرت من طرف Jordan سنة 1970. لقد بين Klein بأن أكثرية مجموعات التحويلات النقطية تكون زمرا بالنسبة لتركيب التحويلات. وأنها مرتبة ترتيبا هرميا. فأقترح إذن ألا نميز العمليات التي لا تغير الأشكال وتلك التي تتناوب (مثل التشابه)، واعتبرها جميعا كمجموعات من التحويلات المرتبة والمكونة للزمر. لم تصبح المواضيع المدروسة سابقا مواضيع هندسية بل تحويلات، فدراسة الهندسة أدى إلى دراسة مبادئ البنى الرياضية. بعض الأفكار لتعليم وتعلم الهندسة إن لغة الهندسة والحدس الهندسي مهمان في فهم مفاهيم ليست بالضرورة هندسية فقط، بل رياضية وعلمية كذلك. وتلعب بالإضافة إلى ذلك دورا أساسيا في العلوم التطبيقية والتكنولوجية. كما أن الهندسة أداة لتطوير قدرة الطفل على التفكير المنطقي.
لتعليم الهندسة أهداف عديدة منها: تنمية الفهم العملي. تنمية التفكير المنطقي. تنمية الخيال تعلم الهندسة لا بوصفها مجموعة من الحقائق النافعة فقط، بل كذلك بوصفها نظاما علميا (حيث بدأت بأسس بسيطة واضحة ليطبق عليها أسلوب الاستدلال المنطقي للوصول إلى نتائج لها تطبيقات عديدة) تقود التلميذ إلى المنهج العلمي. يمكن للهندسة أن تلعب خمسة أدوار أساسية هي:
الهندسة كعلم للفضاء لقد تراكمت معلومات كثيرة عن الأشكال في الفضاء، وكان التعليم التقليدي يتمثل أساسا في تلقين جزءا من هذه المعلومات المتنافرة مع تأكيد فائدتها. ولكن هل نحن على يقين بأن حفظ قاعدة مساحة مثلث مثلا هي أهم من تدريب التلميذ على تقدير مساحة ما بتقسيمها إلى أجزاء بسيطة وإعادة تركيبها بطريقة مختلفة؟ ألا نساهم في تطوير الحس الجمالي عند التلاميذ لما نساعدهم على اكتشاف مساحة مثلث عرفت أطواله: (القاعدة التي تنسب إلى هير: ¼(ا + ب + ج)(ا + ب – ج)(ب + ج – ا)(ج + ا – ب)؟ ألا نلهب حماسهم عندما نقول لهم بأن هذه القاعدة قد أكتشفها أرخميدس من قبل، وفي عصر لم يكن يعرف بعد لغة الجبر؟
الهندسة كنموذج للدقة إن اتباع المنهج الهندسي (وكذلك المنهج التحليلي أو الجبري) يسمح باكتساب عادات معينة في مجال التفكير الرياضي وقدرة معينة في مجال التجريد والتعميم. وهذا كله يؤدي إلى تنمية الدقة الرياضية. الهندسة كمنشط للقدرة على الاستدلال إن إعداد مجموعة من المواقف التعليمية والأنشطة المناسبة لممارسة البرهان الرياضي يعطي للهندسة مكانة أساسية لا بصفتها نموذج للدقة فحسب، بل كذلك تعتبر وسيلة لتنمية القدرات الاستدلالية. إن الهندسة أداة تربوية لا تجارى لتنمية الوعي لما تتميز به البراهين من طبيعة مفيدة ومنتجة. لكن لابد من جعل التلميذ على حذر من البداهة الهندسية وذلك باستعداد الدائم إلى إخضاع فكره لقواعد التفكير الرياضي المنطقي.
الهندسة كلغة للكشف والاستنباط من الواضح أن العمل مع الحاسبات يشكل باعثا قويا لإضفاء الطابع الشكلي على التفكير. إلا أن أهمية الهندسة قد تكمن فيما تحتوي من معلومات وفي كونها أكثر لغات التعلم عن طريق الاستكشاف مما يستوجب تعلمها. إن تنمية التفكير الحدسي تزداد عند تحليلنا لموقف معقد عن طريق الشكل التشخيصي أو الرمزي. كما أن استخدام لغة الهندسة في مجالات رياضية يسمح بالتوصل إلى استنباطات مدهشة. كذلك تنبع فعالية الهندسة على تعلم الاستنباط من الفرص التي تتيحها لتمثيل مفاهيم رمزية بشكل دقيق وواضح قد يتعذر الوصول إليها إذا كتبت بطرق أخرى.
الهندسة كفن للتحويل لقد أصبحت الهندسة منذ القرن 19 علم التحويلات لأنها تدرس تعديلات الأشكال الهندسية أو ما يمثلها، مع ما يصحبها من ثوابت. فكثير من خواص الأشكال الهندسية المألوفة مثلا يمكن إثباتها عن طريق التناظر مما يجنبنا استعمال البرهان عليها بطريقة سقيمة. ويمكن الحصول على كثير من الخواص الهندسية عن طريق تحويل شكل عام إلى شكل معياري (من خلال المنظور يمكن تحويل المضلع الرباعي إلى مربع والقطاع المخروطي إلى دائرة...). وهذا يتطلب مستوى من التفكير الهندسي الذي يعطي أهمية لشكل عملية التحويل أكثر من الأشكال المحولة نفسها. إن الجوانب البصرية والفكرية للهندسة تساعد المكون على تقديم الرياضيات بأسلوب ميسر في مختلف مراحل التعلم. ولابد له أن يستخدم الهندسة في كافة فروع الرياضيات، وأن يحدد التطبيقات التقنية النابعة من الهندسة في هذه الفروع، وأن يجري تنميتها وتطويرها بشكل دائم. لهذا لابد له أن يكون له نظرة شاملة لمنهاج الرياضيات ككل يرتكز على استخدام أسلوب موحد في معالجة الأهداف والمضامين والأساليب. إن استغلال فائدة الهندسة كأسلوب أساسي لمعالجة الرياضيات، وكذلك تقديم المفاهيم الهندسية التي تفيد وتثير الاهتمام، واستثمار تجارب التلاميذ واهتماماتهم، واستخدام المشاكل التي تستحوذ على خيال الحال، كلها مازالت عقبة في وجه المكون. لابد للمكون أن تكون له عدة مهارات منها: مهارات تطبيقية (القدرة على استخدام النماذج الهندسية في حل المشاكل). مهارات بصرية (القدرة على التعرف على مختلف الأشكال المستوية والفضائية وتحديد العلاقات بينها). مهارات لفظية (القدرة على وصف الأشكال وصياغة التعاريف والتعرف على البنى المنطقية شفهيا). مهارات الرسم (القدرة على رسم الأشكال والتعرف على دورها ومميزاتها). مهارات منطقية (القدرة على البرهان بمختلف أنماطه ومعرفة دور المنهج الاستنتاجي).
الهندسة قبل اليونان (بين 4000و2000 قبل الميلاد) يعرف عن حضارات تلك الحقبة بأنها كانت تستعمل المساطر (جمع مسطرة) لقياس الأطوال والمساحات والأحجام. وكانت رسوماتها تشمل أشكالا هندسية طابعها المميز هو التناظر. كان البابليون والمصريون القدماء يهتمون بالمسائل ذات الطابع القياسي دون أن يولوا اهتماما لبرهان الدساتير المستعملة وإنما يستثمرونها كوسائل حسابية فقط. فمثلا استعمل البابليون دساتير مضبوطة لحساب مساحة مثلث، وحجم موشور قائم. وكانوا يعرفون المضلعات المنتظمة وإمكانية رسمها داخل الدائرة. أما المصريون فقد كانت لهم كذلك دساتير مضبوطة تتعلق بمساحة مثلث وشبه منحرف متساوي الساقين وحجم جذع هرمي. وكانوا يملكون تقريبا جيدا للعدد π. يبدو أن مفهومي التشابه والتناسب كانا معروفين. الهندسة عند اليونانيين (ابتداء من القرن 6 قبل الميلاد) أخذ اليونانيون من الحضارات القديمة معارف رياضية وفلكية عديدة. وكان لهم الفضل في تحويل هذا الإرث الحضاري إلى علم استنتاجي بحيث استخدمت مفاهيم البرهان والنظرية والتعريفوالبديهية لتعوضالطابع التجريبي للرياضيات المستعملة من قبل سابقيهم. كما كان لهم الفضل في جعل الهندسة تأخذ طابععلم الفضاء. ووظفوا الاستدلال على الأشكال. كان شعار المدرسة الفيثاغورثية (نسبة إلى Pythagore حوالي 560 – 480 قبل الميلاد) "كل شيء هو عدد". وينسب إليها برهان نظريتها الشهيرة، وكذلك إنشاء الأجسام المنتظمة، والبدء باستعمال الأعدادالصماء. كانت هناك دلائل على إدخال التفكير الفلسفي والمنطقي للهندسة في عهد Platon (حوالي 427 – 348) و Aristote (حوالي 384 – 322). لقد أثر كتاب العناصر(أو الأصول) لمؤلفه Euclid(حوالي 300 قبل الميلاد) في الرياضيين مدة قرون عديدة لما شمله من تجديد نتيجة الاهتمامات المنطقية للمؤلف. وقد أدى ذلك إلى هيمنة الهندسة الاقليدية حتى القرن 18 ميلادية. كما كانت مساهمة العديد منالرياضيين اليونانيين ( منهم Ptolénée, Ménélaus, Aratosthène, Apollonius, Archiméde, Thalès ) هامة ليست فقط في الهندسة، بل في شتى فروع الرياضيات الأخرى. الهندسة في القرون الوسطى (حوالي القرن 5 والقرن15 ميلادية) لقد تم استلام المشعل الحضاري من طرف بغداد نتيجة ترجمة العلوم اليونانية من طرف العرب والمسلمين. وبالتالي دخلت العلوم الرياضية في إطار الحضارة والثقافة العربية الإسلامية. إذ لم يكتف العلماء (القاطنين في بيت الحكمة-بغداد حوالي القرن 8 ميلادية) بترجمة العلوم الرياضية فقط، بل كذلك النصوص الإدارية والفلسفية. وكان كتاب الأصول لاقليدس مرجعا أساسيا. كما أن الإنشاءات الهندسية لم تكن مجرد وصفات، بل براهين هندسية حقيقية مبررة بتطبيقات عملية. فطوال حقبة الرياضيات العربية الإسلامية، تمت دراسة العديد من مشاكل الإنشاءات الهندسية: فأبو الوفاء (حوالي 940 – 998 ميلادية) مثلا، عمل في العديد من الإنشاءات مستعملا المسطرة والمدور. وكانت له طرق خاصة ومبتكرة لكيفية الرسم واستعمال الآلات. كما أن البيروني (حوالي 973 – 1048 ميلادية) حذا حذوه كذلك. إن دراسة المثلث المستوي والمثلث الكروي هي في قلب الرياضيات العربة الإسلامية. كما أن حساب المثلثات قد تطور تبعا لاحتياجات علم الفلك. دخلت علوم العرب المسلمين إلى أوروبا في نهاية القرن 10 ميلادية. وابتداء من القرن 13 ميلادية ظهرت النصوص العربية المترجمة خاصة ما يتعلق بالجبر وحساب المثلثات. وفي نهاية القرون المتوسطة، أخذت الهندسة توجهات جديدة بفضل اكتشاف مبادئ الهندسة الاسقاطية والهندسة الوصفية،وبفضل ظهور الهندسة التحليلية.
الهندسة التحليلية يرتبط بالهندسة التحليلية ثلاث عوامل: 1. التعبير عن الحقيقة الهندسية بعلاقة بين كميات متغيرة. 2. استعمال الإحداثيات. 3. مبدأ التمثيل البياني. بفضل طريقة "الإحداثيات" تم إرجاع المشكل في الهندسة المستوية إلى مشكل مكافئ في الجبر. كما أكتمل التطور فيما يتعلق بالترميز الجبري تحت تأثير Diophante (القرن3) و de Viète و Stevin (القرن 16) مما أدى إلى ترجمة أفضل لهذه المشاكل.يمكن اعتبار كذلك أن الهندسة التحليلية قد أنشئت بشكل متواز اعتمادا على Descartes (1596-1650) و Fermat (1601-1665) رغم أن الكثير من عناصرها المميزة كانت معروفة من قبل. إن الهندسة التحليلية كما نعرفها حاليا، لم تظهر إلا في القرن 18. لقد امتدت من المستوي إلى الفضاء لما اقترحت معادلة الكرة (القرن 17م). كما أن Euler نص على مبدأ التكافؤ بين محوري الإحداثيات في المستوي. وثبت Lagrange معادلتي المستقيم والمستوي حوالي 1770، وافتتح الاستعمال المنهجي لثلاث محاور إحداثية. أما Monge (1746-1818) فقد ثبت معادلات مختلف السطوح الجبرية، وحل العديد من المشاكل بطريقة تحليلية. في القرن 19 أدت الطبيعة الكيفية لاختيار محاور الإحداثيات إلى دراسة ثوابت عند تغيير الإحداثيات مما سمح بالتعبير عن الخواص الأصلية للأشكال الهندسية. هذه الدراسة كانت سببا في تطور مفاهيم الأشعة والتنسورات المستعملة ليست فقط في الرياضيات بل في مواد أخرى كذلك.
الهندسه الاسقاطيةاهتم الفنانون في عصر النهضة بتقديم أشكال الفضاء على المستوي ابتداء من نقطة رؤية العين. وبفضل Monge (1746-1818) ظهرت الهندسة الوصفية حيث اعتمد إطارها النظري على مفهوم المسقط العمودي، وسمحت طريقتها بتقديم شكل فضائي باستعمال مساقط عمودية من هذا الشكل على مستويين متعامدين. لقد أكمل العمل Pocelet (1788-1867) حيث أظهر خاصيتين للأشكال: الخواص المترية (التابعة للمقادير). الخواص الوصفية (التابعة للأشكال والوضعيات). لكن نقص الهندسة الاسقاطية يتمثل في التمييز بين هذين النوعين من الخواص. إلا أن أعمال Hilbert و Darboux(في نهاية القرن 19 وبداية القرن 20) سمحت بإرساء أسس بديهية لهذه الهندسة وبشكل دقيق. فعلى سبيل المثال أعطى Klein (1849-1925) تعريفا يسمح بتمييز كل هندسة وبالتالي تتميز الهندسة الاقليدية بدراسة الخواص اللامتغيرة عن طريق زمرة من التحويلات معطاة. أما Hilbert (1862-1943) فقد نشر نظاما بديهيا كاملا للهندسة إلاقليدية. مما سبق، نجد أن معنى الإسقاط كان محصورا بالمساقط المركزية المقامة على مستقيم أو مستوي. وتتميز الهندسة الاسقاطية بدراسة خواص الأشكال المحفوظة بكل تحويل خطي للمستقيم أو المستوي أو الفضاء. إنها تؤثر على أشكال الفضاء بتقديم عناصر مثالية: عناصر تخيلية أو في اللانهاية. إنها العامل الأساسي في تحريك أفكار القرن 21 الحالي فيما يخص تقريب الهندسات بعضها البعض، وإعطاء مفهوم التحويل الهندسي دورا راجحا.
الهندسة اللااقليدية إن مصادرة "التوازي"لاقليدس: من نقطة معطاة يمر منها مواز واحد لمستقيم معطى، كانت محل نقاش منذ القدم. الكثير من الرياضيين حاولوا برهانها دون نجاح. لكن في القرن 18 وبالضبط في عامي 1733، 1770 قدم على التوالي كل من Saccheri و Lambert طريقة للبرهان هي الاستدلال بالخلف. وكانا يعتقدان بأن نفي المصادرة سيسمح لهما بالحصول على نتائج متناقضة. لكن هذا لم يحصل مما عزز الاعتقاد بأن نظريات اقليدس مستقلة عن هذه المصادرة. في بداية القرن 19، أصبح الكثير من الرياضيين مقتنعين بأنه لا يمكن البرهان على هذه المصادرة، وعليه فالهندسة الاقليدية ليست الوحيدة منسجمة منطقيا. لقد كان Gauss (1777-1855) أول من قدم فكرة إمكانية إنشاء هندسة لا تعتمد على مصادرة اقليدس. ثم بعد فترة ليست بالطويلة وضح بشكل مستقل كل من Lobatchevski (1793-1856) و Bolyai (1802-1862) نتائج غاوص بتعريفهما لهندسة لااقليدية سميت هندسة زائدية: من نقطة خارج مستقيم يمر عدد لانهائي من المستقيمات الموازية له. لقد عرف Rieman (1826-1866) هندسة لااقليدية أخرى سميت بهندسة ناقصية: من نقطة خارج مستقيم لا يمر أي مواز له. هذه الاكتشافات بقيت مجهولة حتى سنة 1860 حيث بفضل تأثير الهندسة التفاضلية والأعمال المتعلقة بمساحة الأرض والفلك، أصبحنا نعرف أفضل هذه الهندسات، كما اعتبرت كجزء من الرياضيات. وأكثر من هذا، أصبحنا بفضلها نفهم أكثر الهندسة الاقليدية، كما أصبحت فيما بعد مصدرا لتطبيقات هامة مثل التي نتجت عن النظرية النسبية (المنسوبة إلى Einstein ). قد يطرح مشكل جديد يتمثل في نوع العلاقات الموجودة بين الهندسة الاقليدية والهندسة الاسقاطية والهندسة اللااقليدية. إن مفهوم التحويل الهندسي قد يسمح بحل هذا المشكل.
التحويلات الهندسية عندما تكلم اقليدس عن تساوي مثلثين، كان الاعتقاد بأنه قصد التطابق بينهما. لكن الإزاحة (الانتقال من وضعية ابتدائية إلى وضعية نهائية بدون أخذ بعين الاعتبار للوضعيات الوسيطية) لم تكن مدروسة كموضوع رياضي إلا في القرن 18 عن طريق Euler(1707-1783) الذي فكر كذلك في مركب إزاحتين. لقد تم إدخال المسقط المركزي في دراسة التحويلات النقطية من طرف Desargues ثم Pascal، لكن هذا المفهوم لم يأخذ الانطلاقة إلا بعد نهاية القرن 18 حيث عرف ِChasles التحويل الاسقاطي بأكثر عمومية. وتمت دراسة التآلف والدوران والتناظر والانسحاب والتحاكي. عند منتصف القرن 19 ظهرت فكرة ترتيب الخواص الهندسية حسب التحويلات التي تجعل هذه الخواص لامتغيرة. كما أن كل نمط من التحويل يرفق بهندسة. لقد بدأت تظهر الروابط بين الجبر والهندسة بفضل رياضيين اهتموا بدراسة التحليل والجبر. كمثال على ذلك، نجد أن Cayley (1821-1895) قد أخذ بعين الاعتبار للجوانب اللامتغيرة، وأثناء عمله في موضوع المسافة، أقام علاقات بين الهندسة الاسقاطية والهندسة الاقليدية مما سمح فيما بعد بتحديد الربط بين الخواص المترية والاسقاطية. لقد أصبحت كلا من الهندسة الاقليدية واللااقليدية كحالة خاصة من الهندسة الاسقاطية. لقد أثبت Klein (1849–1925) أن الهندسة الاسقاطية العامة لا تدخل في نطاقها مصادرة التوازي الأمر الذي لم يعمل به أحد من قبل. ووضح دور التحويلات النقطية بإرفاقها بمفهوم الزمرة التي قدمها الرياضي Galois سنة 1830 ونشرت من طرف Jordan سنة 1970. لقد بين Klein بأن أكثرية مجموعات التحويلات النقطية تكون زمرا بالنسبة لتركيب التحويلات. وأنها مرتبة ترتيبا هرميا. فأقترح إذن ألا نميز العمليات التي لا تغير الأشكال وتلك التي تتناوب (مثل التشابه)، واعتبرها جميعا كمجموعات من التحويلات المرتبة والمكونة للزمر. لم تصبح المواضيع المدروسة سابقا مواضيع هندسية بل تحويلات، فدراسة الهندسة أدى إلى دراسة مبادئ البنى الرياضية. بعض الأفكار لتعليم وتعلم الهندسة إن لغة الهندسة والحدس الهندسي مهمان في فهم مفاهيم ليست بالضرورة هندسية فقط، بل رياضية وعلمية كذلك. وتلعب بالإضافة إلى ذلك دورا أساسيا في العلوم التطبيقية والتكنولوجية. كما أن الهندسة أداة لتطوير قدرة الطفل على التفكير المنطقي.
لتعليم الهندسة أهداف عديدة منها: تنمية الفهم العملي. تنمية التفكير المنطقي. تنمية الخيال تعلم الهندسة لا بوصفها مجموعة من الحقائق النافعة فقط، بل كذلك بوصفها نظاما علميا (حيث بدأت بأسس بسيطة واضحة ليطبق عليها أسلوب الاستدلال المنطقي للوصول إلى نتائج لها تطبيقات عديدة) تقود التلميذ إلى المنهج العلمي. يمكن للهندسة أن تلعب خمسة أدوار أساسية هي:
الهندسة كعلم للفضاء لقد تراكمت معلومات كثيرة عن الأشكال في الفضاء، وكان التعليم التقليدي يتمثل أساسا في تلقين جزءا من هذه المعلومات المتنافرة مع تأكيد فائدتها. ولكن هل نحن على يقين بأن حفظ قاعدة مساحة مثلث مثلا هي أهم من تدريب التلميذ على تقدير مساحة ما بتقسيمها إلى أجزاء بسيطة وإعادة تركيبها بطريقة مختلفة؟ ألا نساهم في تطوير الحس الجمالي عند التلاميذ لما نساعدهم على اكتشاف مساحة مثلث عرفت أطواله: (القاعدة التي تنسب إلى هير: ¼(ا + ب + ج)(ا + ب – ج)(ب + ج – ا)(ج + ا – ب)؟ ألا نلهب حماسهم عندما نقول لهم بأن هذه القاعدة قد أكتشفها أرخميدس من قبل، وفي عصر لم يكن يعرف بعد لغة الجبر؟
الهندسة كنموذج للدقة إن اتباع المنهج الهندسي (وكذلك المنهج التحليلي أو الجبري) يسمح باكتساب عادات معينة في مجال التفكير الرياضي وقدرة معينة في مجال التجريد والتعميم. وهذا كله يؤدي إلى تنمية الدقة الرياضية. الهندسة كمنشط للقدرة على الاستدلال إن إعداد مجموعة من المواقف التعليمية والأنشطة المناسبة لممارسة البرهان الرياضي يعطي للهندسة مكانة أساسية لا بصفتها نموذج للدقة فحسب، بل كذلك تعتبر وسيلة لتنمية القدرات الاستدلالية. إن الهندسة أداة تربوية لا تجارى لتنمية الوعي لما تتميز به البراهين من طبيعة مفيدة ومنتجة. لكن لابد من جعل التلميذ على حذر من البداهة الهندسية وذلك باستعداد الدائم إلى إخضاع فكره لقواعد التفكير الرياضي المنطقي.
الهندسة كلغة للكشف والاستنباط من الواضح أن العمل مع الحاسبات يشكل باعثا قويا لإضفاء الطابع الشكلي على التفكير. إلا أن أهمية الهندسة قد تكمن فيما تحتوي من معلومات وفي كونها أكثر لغات التعلم عن طريق الاستكشاف مما يستوجب تعلمها. إن تنمية التفكير الحدسي تزداد عند تحليلنا لموقف معقد عن طريق الشكل التشخيصي أو الرمزي. كما أن استخدام لغة الهندسة في مجالات رياضية يسمح بالتوصل إلى استنباطات مدهشة. كذلك تنبع فعالية الهندسة على تعلم الاستنباط من الفرص التي تتيحها لتمثيل مفاهيم رمزية بشكل دقيق وواضح قد يتعذر الوصول إليها إذا كتبت بطرق أخرى.
الهندسة كفن للتحويل لقد أصبحت الهندسة منذ القرن 19 علم التحويلات لأنها تدرس تعديلات الأشكال الهندسية أو ما يمثلها، مع ما يصحبها من ثوابت. فكثير من خواص الأشكال الهندسية المألوفة مثلا يمكن إثباتها عن طريق التناظر مما يجنبنا استعمال البرهان عليها بطريقة سقيمة. ويمكن الحصول على كثير من الخواص الهندسية عن طريق تحويل شكل عام إلى شكل معياري (من خلال المنظور يمكن تحويل المضلع الرباعي إلى مربع والقطاع المخروطي إلى دائرة...). وهذا يتطلب مستوى من التفكير الهندسي الذي يعطي أهمية لشكل عملية التحويل أكثر من الأشكال المحولة نفسها. إن الجوانب البصرية والفكرية للهندسة تساعد المكون على تقديم الرياضيات بأسلوب ميسر في مختلف مراحل التعلم. ولابد له أن يستخدم الهندسة في كافة فروع الرياضيات، وأن يحدد التطبيقات التقنية النابعة من الهندسة في هذه الفروع، وأن يجري تنميتها وتطويرها بشكل دائم. لهذا لابد له أن يكون له نظرة شاملة لمنهاج الرياضيات ككل يرتكز على استخدام أسلوب موحد في معالجة الأهداف والمضامين والأساليب. إن استغلال فائدة الهندسة كأسلوب أساسي لمعالجة الرياضيات، وكذلك تقديم المفاهيم الهندسية التي تفيد وتثير الاهتمام، واستثمار تجارب التلاميذ واهتماماتهم، واستخدام المشاكل التي تستحوذ على خيال الحال، كلها مازالت عقبة في وجه المكون. لابد للمكون أن تكون له عدة مهارات منها: مهارات تطبيقية (القدرة على استخدام النماذج الهندسية في حل المشاكل). مهارات بصرية (القدرة على التعرف على مختلف الأشكال المستوية والفضائية وتحديد العلاقات بينها). مهارات لفظية (القدرة على وصف الأشكال وصياغة التعاريف والتعرف على البنى المنطقية شفهيا). مهارات الرسم (القدرة على رسم الأشكال والتعرف على دورها ومميزاتها). مهارات منطقية (القدرة على البرهان بمختلف أنماطه ومعرفة دور المنهج الاستنتاجي).
محطات في تاريخ الرياضيات
تعريف تعرف الرياضيات على أنها دراسة البنية ، الفضاء ، و التغير ، و بشكل عام على أنها دراسة البنى المجردة باستخدام المنطق و التدوين الرياضي. و بشكل أكثر عمومية، تعرف الرياضيات على انها دراسة الاعداد و انماطها. البنى الرياضية التي يدرسها الرياضيون غالبا ما يعود اصلها الى العلوم الطبيعية، و خاصة الفيزياء، ولكن الرياضيين يقومون بتعريف و دراسة بنى اخرى لاغراض رياضية بحتة، لان هذه البنى قد توفر تعميما لحقول اخرى من الرياضيات مثلا، او ان تكون عاملا مساعدا في حسابات معينة، و اخيرا فان الرياضيين قد يدرسون حقولا معينة من الرياضيات لتحمسهم لها، معتبرين ان الرياضيات هي فن و ليس علما تطبيقيا . .محطات تاريخية
3000 ق.م استخدم قدماء المصريين النظام العشري. وطوروا كذلك الهندسة وتقنيات مساحة الأ راضي . 370 ق.م عرف إيودكسس الكندوسي طريقة الاستنفاد، التي مهدت لحساب التكامل . 300 ق.م أنشأ إقليدس نظامًا هندسيًا مستخدمًا الاستنتاج المنطقي . 787م ظهرت الأرقام والصفر المرسوم على هيئة نقطة في مؤلفات عربية قبل أن تظهر في الكتب الهندية . 830م أطلق العرب على علم الجبر هذا الاسم لأول مرة . 835م استخدم الخوارزمي مصطلح الأصم لأول مرة للإشارة للعدد الذي لا جذر له . 888م وضع الرياضيون العرب أولى لبنات الهندسة التحليلية بالاستعانة بالهندسة في حل المعادلات الجبرية . 912م استعمل البتاني الجيب بدلا من وتر ضعف القوس في قياس الزوايا لأول مرة . 1029م استغل الرياضيون العرب الهندسة المستوية والمجسمة في بحوث الضوء لأول مرة في التاريخ . 1142مترجم أديلارد ـ من باث ـ من العربية الأجزاء الخمسة عشر من كتاب العناصر لأقليدس، ونتيجة لذلك أضحت أعمال أقليدس معروفة جيدًا في أوروبا . منتصف القرن الثاني عشر الميلادي. أُدْخِلَ نظام الأعداد الهندية ـ العربية إلى أوروبا نتيجةً لترجمة كتاب الخوارزمي في الحساب . 1252م لفت نصير الدين الطوسي الانتباه ـ لأول مرة ـ لأخطاء أقليدس في المتوازيات . 1397م اخترع غياث الدين الكاشي الكسور العشرية . 1465م وضع القلصادي أبو الحسن القرشي لأول مرة رموزًا لعلم الجبر بدلاً عن الكلمات . 1514م استخدم عالم الرياضيات الهولندي فاندر هوكِي اشارتي الجمع (+) والطرح (-) لأول مرة في الصيغ الجبرية . 1533م أسس عالم الرياضيات الألماني ريجيومونتانوس، حساب المثلثات كفرع مستقل عن الفلك . 1542م ألف جيرولامو كاردانو أول كتاب في الرياضيات الحديثة . 1557م أدخل روبرت ركورد إشارة المساواة (=) في الرياضيات معتقدًا أنه لا يوجد شيء يمكن أن يكون أكثر مساواة من زوج من الخطوط المتوازية . 1614م نشر جون نابيير اكتشافه في اللوغاريتمات، التي تساعد في تبسيط الحسابات . 1637م نشر رِينيه ديكارت اكتشافه في الهندسة التحليلية، مقررًا أن الرياضيات هي النموذج الأمثل للتعليل . منتصف العقد التاسع للقرن السابع عشرالميلادي. نشر كل من السير إسحق نيوتن وجوتفريد ولهلم ليبنتز بصورة مستقلة اكتشافاتهما في حساب التفاضل والتكامل . 1717م قام أبراهام شارب بحساب قيمة النسبة التقريبية حتى 72 منزلة عشرية . 1742م وضع كريستين جولدباخ ما عُرف بحدسية جولدباخ: وهو أنّ كلّ عدد زوجي هو مجموع عددين أوليين. ولا تزال هذه الجملة مفتوحة لعلماء الرياضيات لإثبات صحّتها أو خطئها . 1763م أدخل جسبارت مونيي الهندسة الوصفية وقد كان حتى عام 1795م يعمل في الاستخبارات العسكرية الفرنسية . بداية القرن التاسع عشر الميلادي. عمل علماء الرياضيات كارل فريدريك جوس ويانوس بولْياي، نقولا لوباشيفسكي، وبشكل مستقل على تطوير هندسات لا إقليدية . بداية العقد الثالث من القرن التاسع عشر. بدأ تشَارْلْز بَبَاج في تطوير الآلات الحاسبة . 1822م أدخل جين بابتست فورييهٌْ تحليل فورييه . 1829م أدخل إفاريست جالوا نظرية الزمر . 1854م نشر جورج بولي نظامه في المنطق الرمزي . 1881م أدخل جوشياه وِيلارد جبس تحليل المتجهات في ثلاثة أبعاد . أواخر القرن التاسع عشر الميلادي. طور جورج كانتور نظرية المجموعات والنظرية الرياضية للمالانهاية . 1908م طور إرنست زيرميلو طريقة المسلمات لنظرية المجموعات مستخدمًا عبارتين غير معروفتين وسبع مسلمات . 1910-1913م نشر أَلفرد نورث وايتهيد وبرتراند رسِل كتابهما مبادئ الرياضيات وجادلا فيه أنّ كل الفرضيات الرياضية يمكن استنباطها من عدد قليل من المسلمات . 1912م بدأ ل. ي. ج. برلور الحركة الحدسية في الرياضيات باعتبار الأعداد الطبيعية الأساس في البنية الرياضية التي يمكن إدراكها حدسيًا . 1921م نشر إيمي نوذر طريقة المسلمات للجبر . بداية الثلاثينيات من القرن العشرين الميلادي. أثبت كورت جودل أن أي نظام من المسلمات يحوي جملاً لا يمكن إثباتها . 1937م قدم أَلانْ تُورنْج وصفًا لــ " آلة تَورنج " وهي حاسوب آلي تخيلي يمكن أن يقوم بحل جميع المسائل ذات الصبغة الحسابية . مع نهاية الخمسينيات وعام 1960م دَخَلت الرياضيات الحديثة إلى المدارس في عدة دول . 1974م طور روجر بنروز تبليطة مكونة من نوعين من المعينات غير متكررة الأنماط. واكتشف فيما بعد أن هذه التبليطات التي تدعي تبليطات بنروز تعكس بنية نوع جديد من المادة المتبلورة وشبه المتبلورة . سبعينيات القرن العشرين ظهرت الحواسيب المبنية على أسس رياضية، واستخدمت في التجارة والصناعة والعلوم . 1980م بحث عدد من علماء الرياضيات المنحنيات الفراكتلية، وهي بنية يمكن استخدامها لتمثيل الظاهرة الهيولية .
الإغريق والرومان . يعد علماء الإغريق أول من اكتشف الرياضيات البحتة بمعزل عن المسائل العملية. أدخل الإغريق الاستنتاج المنطقي والبرهان، وأحرزوا بذلك تقدمًا مهمًا من أجل الوصول إلى بناء نظرية رياضية منظمة . وتقليديًا يعد الفيلسوف طاليس أول من استخدم الاستنتاج في البرهان، وانصبَّ جل اهتمامه على الهندسة حوالي 600 ق.م . اكتشف الفيلسوف الإغريقي فيثاغورث، الذي عاش حوالي 550 ق.م.، طبيعة الأعداد، واعتقد أن كل شيء يمكن فهمه بلغة الأعداد الكلية أو نسبها. بيد أنه في حوالي العام 400 ق.م. اكتشف الإغريق الأعداد غير القياسية (وهي الأعداد التي لا يمكن التعبير عنها كنسبة لعددين كليين)، وأدركوا أن أفكار فيثاغورث لم تكن متكاملة. وفي حوالي 370 ق.م. صاغ الفلكي الإغريقي يودوكسوس أوف كنيدوس نظرية بالأعداد غير القياسية وطوّر طريقة الاستنفاد، وهي طريقة لتحديد مساحة المنطقة المحصورة بين المنحنيات، مهدت لحساب التكامل .وفي حوالي 300 ق.م قام إقليدس ـ أحد أبرز علماء الرياضيات الأغريق ـ بتأليف كتاب العناصر، إذ أقام نظامًا للهندسة مبنيًا على التعاريف التجريدية والاستنتاج الرياضي. وخلال القرن الثالث قبل الميلاد عمَّم عالم الرياضيات الإغريقي أرخميدس طريقة الاستنفاد، مستخدمًا مضلعًا من 96 ضلعًا لتعريف الدائرة، حيث أوجد قيمة عالية الدقة للنسبة التقريبية باي (وهي النسبة بين محيط الدائرة وقطرها). وفي حوالي العام 150 ق.م. استخدم الفلكي الإغريقي بطليموس الهندسة وحساب المثلثات في الفلك لدراسة حركة الكواكب، وتمّ هذا في أعماله المكونة من 13 جزءًا. عرفت فيما بعد بالمجسطي أي الأعظم .وأظهر الرومان اهتمامًا ضئيلاً بالرياضيات البحتة، غير أنهم استخدموا المبادئ الرياضية في مجالات كالتجارة والهندسة وشؤون الحرب .
الرياضيات عند العرب . قام علماء العرب المسلمون بترجمة وحفظ أعمال قدامى الإغريق من علماء الرياضيات بالإضافة إلى إسهاماتهم المبتكرة .وألف عالم الرياضيات العربي الخوارزمي كتابًا حوالي عام 210هـ، 825م، وصف فيه نظام العد اللفظي المطور في الهند. وقد استخدم هذا النظام العشري قيمًا للمنزلة وكذلك الصفر، وأصبح معروفًا بالنظام العددي الهندي ـ العربي كما ألف الخوارزمي كذلك كتابًا قيمًا في الجبر بعنوان كتاب الجبر والمقابلة، وأخذت الكلمة الإنجليزية من عنوان هذا الكتاب .وفي منتصف القرن الثاني عشر الميلادي أدخل النظام العددي الهندي ـ العربي إلى أوروبا نتيجة ترجمة كتاب الخوارزمي في الحساب إلى اللاتينية. ونشر الرياضي الإيطالي ليوناردو فيبوناتشي عام 1202م كتابًا في الجبر عزز من مكانة هذا النظام. وحل هذا النظام تدريجيًا محل الأعداد الرومانية في أوروبا .وقدم فلكيو العرب في القرن الرابع الهجري، العاشر الميلادي إسهامات رئيسية في حساب المثلثات. واستخدم الفيزيائي العربي المسلم الحسن بن الهيثم أبو علي خلال القرن الحادي عشر للميلاد الهندسة في دراسة الضوء. وفي بداية القرن الثاني عشر الميلادي ألف الشاعر والفلكي الفارسي عمر الخيام كتابًا هامًا في الجبر. ووضع عالم الرياضيات الفارسي نصير الدين الطوسي في القرن الثالث عشر الميلادي نموذجًا رياضيًا إبداعيًا يستخدم في الفلك. انظر : العلوم عند العرب والمسلمين (الرِّياضيات ).
عصر النهضة الأوروبية . بدأ المكتشفون الأوروبيون في القرنين الخامس عشر والسادس عشر البحث عن خطوط تجارية جديدة لما وراء البحار مما أدى إلى تطبيق الرياضيات في التجارة والملاحة، ولعبت الرياضيات كذلك دورًا في الإبداع الفني، فطبق فنانو عصر النهضة مبادئ الهندسة وابتدعوا نظام الرسم المنظوري الخطي الذي أضفى الخداع في العمق والمسافة على لوحاتهم الفنية، وكان لاختراع الطباعة الآلية في منتصف القرن الرابع عشر الميلادي أثر كبير في سرعة انتشار وإيصال المعلومات الرياضية. وواكب عصر النهضة الأوروبية كذلك تطور رئيسي في الرياضيات البحتة. ففي عام 1533م نشر عالم رياضيات ألماني اسمه ريجيومانتانوس كتابًا حقق فيه استقلالية الهندسة كمجال منفصل عن الفلك. وحقق عالم الرياضيات الفرنسي فرانسوا فييت تقدمًا في الجبر، وظهر هذا في كتابه الذي نشر عام 1591م .
الرياضيات والثورة العلمية . مع حلول القرن السابع عشر، ساهم ازدياد استخدام الرياضيات ونماء الطريقة التجريبية في إحداث تغيير جذري في تقدم المعرفة، ففي العام 1543م ألف الفلكي اليولوني نيكولاس كوبرنيكوس كتابًا قيمًا في الفلك بين فيه أن الشمس ـ وليست الأرض ـ هي مركز الكون. وأحدث كتابه اهتمامًا متزايدًا في الرياضيات وتطبيقاتها. وعلى الأخص في دراسة حركة الأرض والكواكب الأخرى. وفي عام 1614م نشر عالم الرياضيات الأسكتلندي جون نابـيير اكتشافه للوغاريتمات وهي أعداد تستخدم لتبسيط الحسابات المعقدة كتلك المستخدمة في الفلك. ووجد الفلكي الإيطالي جاليليو ـ الذي عاش في نهاية القرن السادس عشر وبداية القرن السابع عشر ـ أنه يمكن دراسة أنواع كثيرة لحركة الكواكب رياضيًا .وبين الفيلسوف الفرنسي رينيه ديكارت في كتابه الذي نشر عام 1637م، أن الرياضيات هي النموذج الأمثل للتعليل، وأوضح ابتكاره للهندسة التحليلية مقدار الدقة واليقين اللذين تزودنا بهما الرياضيات .وأسس الرياضي الفرنسي بيير دو فيرما، وهو أحد علماء القرن السابع عشر، نظرية الأعداد الحديثة. كما اكتشف مع الفيلسوف الفرنسي بليس باسكال نظرية الاحتمالات . وساعد عمل فيرما في الكميات المتناهية الصغر إلى وضع أساس حساب التفاضل والتكامل .وفي منتصف القرن السابع عشر الميلادي اكتشف العلاّمة الإنجليزي السير إسحق نيوتن حساب التفاضل والتكامل. وكانت أول إشارة إلى اكتشافه هذا في الكتاب الذي نشر عام 1687م. واكتشف الرياضي والفيلسوف الألماني غوتفرين فلهلم لايبنين ـ كذلك وبشكل مستقل ـ حساب التفاضل والتكامل في منتصف عام 1670م، ونشر اكتشافاته ما بين 1684م و 1686م .
التطورات في القرن الثامن عشر الميلادي . خلال أواخر القرن السابع عشر ومطلع القرن الثامن عشر قدمت عائلة برنولي ـ وهي عائلة سويسرية شهيرة ـ إسهامات عديدة في الرياضيات. فقد قدم جاكوب برنولي عملاً رائدًا في الهندسة التحليلية، وكتب كذلك حول نظرية الاحتمالات. وعمل أخوه جوهان كذلك في الهندسة التحليلية، والفلك الرياضي والفيزياء. وساهم نقولا بن يوهان في تقدم نظرية الاحتمالات، واستخدم دانيال بن يوهان الرياضيات لدراسة حركة الموائع وخواص اهتزاز الأوتار .وخلال منتصف القرن الثامن عشر طور الرياضي السويسري ليونارد أْويلر حساب التفاضل والتكامل وبين أنّ عمليتي الاشتقاق والتكامل عكسيتان. وبدأ عالم الرياضيات الفرنسي جَوزِيفْ لاجْرانْجْ في نهاية القرن الثامن عشر العمل لتطوير حساب التفاضل والتكامل على أسس ثابتة، فطوّر حساب التفاضل والتكامل مستخدمًا في ذلك لغة الجبر بدلاً من الاعتماد على الفرضيات الهندسية التي كانت تساوره الشكوك حولها .
في القرن التاسع عشر . اتسع نطاق التعليم العام بسرعة كبيرة وأصبحت الرياضيات جزءًا أساسيًا في التعليم الجامعي. ونشرت معظم الأعمال المهمة لرياضيات القرن التاسع عشر كمراجع. وكتب الرياضي الفرنسي أَدريان ماري ليجندر في نهاية القرن الثامن عشر وبداية القرن التاسع عشر عدة مراجع مهمة، وبحث في حساب التفاضل والتكامل والهندسة ونظرية الأعداد. ونُشرت في الثلاثينيات من القرن التاسع عشر مراجع مهمة في حساب التفاضل والتكامل لعالم الرياضيات الفرنسي أوجستين لويس كوشي، وأحرز كوشي وعالم الرياضيات الفرنسي جين ببتيست فورييه تقدمًا هامًا في الفيزياء الرياضية. وأثبت عالم الرياضيات الألماني كارل فريدريك جاوس النظرية الأساسية في الجبر، ونصها: أن لكل معادلة جذرًا واحدًا في الأقل. وأدت أعماله في الأعداد المركبة إلى ازدياد تقبلها. وطور جاوس في العشرينيات من القرن التاسع عشر هندسة لا إقليدية ولكنه لم ينشر اكتشافاته هذه، كما طور الهنغاري يانوس بولياي، والروسي نيكولاي لوباشفيسكي وبشكل مستقل ـ هندسات لا إقليدية. ونشرا اكتشافاتهما هذه نحو عام 1830م وطور الألماني جورج فريدريك ريمان في منتصف القرن التاسع عشر هندسة لا إقليدية أخرى .ومع مطلع القرن التاسع عشر ساهمت أعمال عالم الرياضيات الألماني أوجست فرديناند ميبس في تطوير دراسة الهندسة، وسميت فيما بعد الطوبولوجيا التي تعنى بدراسة خواص الأشكال الهندسية التي لا تتغير بالثني أو المد. انظر : الطوبولوجيا .وفي أواخر القرن التاسع عشر عمل عالم الرياضيات الألماني كَارْلْ ثُيُودورْ فَيْسْتْراس على وضع أسس نظرية متينة لحساب التفاضل والتكامل. وطوّر تلميذه جُورْجْ كانتور في العقدين الثامن والتاسع من القرن التاسع عشر نظرية المجموعات ونظرية رياضية للمالانهاية. أُنْجِزَ معظم العمل في الرياضيات التطبيقية في القرن التاسع عشر، في بريطانيا حيث طوْر تشَارْلْزْ بايبج الآلة الحاسبة البدائية. ووضع جورج بولي نظامًا في المنطق الرمزي. وقدم عالم الرياضيات الفرنسي جُولْ هنْري بوانكاريه خلال نهاية القرن التاسع عشر إسهامات في نظرية الأعداد والميكانيكا السماوية والطوبولوجيا ودراسة الموجات الكهرومغنطيسية . اهتماماتهم بالأساسيات الفلسفية للرياضيات. واستخدم بعض علماء الرياضيات المنطق للتخلص من التناقضات، ولتطوير الرياضيات من مجموعة من المسلمات (وهي جمل أساسية تعد صائبة ).
أنشأ الفيلسوفان وعالما الرياضيات البريطانيان أَلفرد نورث وايتهد، وبرتراند راسل فلسفة للرياضيات تدعى المنطقية . وفي عملهما المشترك مبادئ الرياضيات (1910-1913م)، المكون من ثلاثة أجزاء، رأوا أن فرضيات جمل الرياضيات يمكن استنباطها من عدد قليل من المسلَّمات .وكان عالم الرياضيات الألماني ديفيد هلبرت الذي عاش في بداية القرن العشرين منهجيًا . ويعتبر المنهجيون الرياضيات نظامًا منهجيًا بحتًا من القوانين . وقاد عمل هلبرت إلى دراسة الفضاءات المركبة ذات الأبعاد غير المنتهية .وقاد عالم الرياضيات الهولندي ليوتسن براور ـ في بداية القرن العشرين ـ مذهب الحدْسية، واعتقد أن الناس يمكنهم فهم قوانين الرياضيات بالحدْس (المعرفة التي لا يحصل عليها بالتعليل أو التجربة ).وفي الأربعينيات من القرن العشرين برهن عالم الرياضيات النمساوي كورت جودل أنه يوجد في أي نظام منطقي نظريات لا يمكن إثبات أنها صائبة أو خاطئة بمسلمات ذلك النظام فقط. ووجد أنّ هذا صحيح حتى في مفاهيم الحساب الأساسية .ثم خطا علماء الرياضيات خلال القرن العشرين خطوات رئيسية في دراسة البنى الرياضية التجريدية. وإحدى هذه البنى الزُّمرة، التي هي تجمُّع لعناصر، قد تكون أعدادًا، وقواعد لعملية ما على هذه العناصر، كالجمع أو الضرب. ونظرية الزمرة مفيدة في مناطق عدة في الرياضيات ومجالات مثل فيزياء الجسيمات الصغيرة .ومنذ عام 1939م قامت مجموعة من علماء الرياضيات أغلبها من الفرنسيين بنشر سلسلة من الكتب القيمة تحت اسم نقولا بورباكي. واّخذت هذه السلسلة المنحى التجريدي باستخدامها نظام المُسلَّمات ونظرية المجموعات .وخلال القرن العشرين برزت مجالات رياضية تخصصية جديدة شملت النظم التحليلية، وعلم الحاسوب وكان تقدم علم المنطق أساسًا لتقدم الحاسبات الكهربائية. وفي المقابل، تمكن علماء الرياضيات بفضل الحاسوب من استكمال الحسابات المعقدة بسرعة فائقة. ومنذ الثمانينيات من القرن العشرين شاع استخدام الحواسيب المبنية على النماذج الرياضية لدراسة حالة الطقس والعلاقات الاقتصادية ونظم عديدة أخرى .
الاتجاهات في تدريس الرياضيات . قبل الخمسينيات من القرن العشرين الميلادي، ركزت معظم مقررات الرياضيات في المدارس في عدة بلدان على تطوير المهارات الحسابية الأساسية. وأُدخلت الرياضيات الحديثة خلال نهاية الخمسينيات والستينيات من القرن العشرين. والرياضيات الحديثة طريقة لتعلم الرياضيات تركز على استيعاب المفاهيم الرياضية لا على حفظ القواعد والأداء المتكرر للتدريبات. وفي السبعينيات والثمانينيات من القرن العشرين استمر القائمون على التعليم في استخدام الرياضيات الحديثة مع الإضافة والتركيز على حلّ المسائل والمهارات الحسابية .ولم تَعُد الجامعات تُدرس الرياضيات لجميع الطلاب بالأسلوب نفسه. وبدلأً من ذلك، بدأت الكليات والجامعات تقدم مقررات تخصصية ذات صبغة تطبيقية للرياضيات في مجالات كالاقتصاد والهندسة والفيزياء .
3000 ق.م استخدم قدماء المصريين النظام العشري. وطوروا كذلك الهندسة وتقنيات مساحة الأ راضي . 370 ق.م عرف إيودكسس الكندوسي طريقة الاستنفاد، التي مهدت لحساب التكامل . 300 ق.م أنشأ إقليدس نظامًا هندسيًا مستخدمًا الاستنتاج المنطقي . 787م ظهرت الأرقام والصفر المرسوم على هيئة نقطة في مؤلفات عربية قبل أن تظهر في الكتب الهندية . 830م أطلق العرب على علم الجبر هذا الاسم لأول مرة . 835م استخدم الخوارزمي مصطلح الأصم لأول مرة للإشارة للعدد الذي لا جذر له . 888م وضع الرياضيون العرب أولى لبنات الهندسة التحليلية بالاستعانة بالهندسة في حل المعادلات الجبرية . 912م استعمل البتاني الجيب بدلا من وتر ضعف القوس في قياس الزوايا لأول مرة . 1029م استغل الرياضيون العرب الهندسة المستوية والمجسمة في بحوث الضوء لأول مرة في التاريخ . 1142مترجم أديلارد ـ من باث ـ من العربية الأجزاء الخمسة عشر من كتاب العناصر لأقليدس، ونتيجة لذلك أضحت أعمال أقليدس معروفة جيدًا في أوروبا . منتصف القرن الثاني عشر الميلادي. أُدْخِلَ نظام الأعداد الهندية ـ العربية إلى أوروبا نتيجةً لترجمة كتاب الخوارزمي في الحساب . 1252م لفت نصير الدين الطوسي الانتباه ـ لأول مرة ـ لأخطاء أقليدس في المتوازيات . 1397م اخترع غياث الدين الكاشي الكسور العشرية . 1465م وضع القلصادي أبو الحسن القرشي لأول مرة رموزًا لعلم الجبر بدلاً عن الكلمات . 1514م استخدم عالم الرياضيات الهولندي فاندر هوكِي اشارتي الجمع (+) والطرح (-) لأول مرة في الصيغ الجبرية . 1533م أسس عالم الرياضيات الألماني ريجيومونتانوس، حساب المثلثات كفرع مستقل عن الفلك . 1542م ألف جيرولامو كاردانو أول كتاب في الرياضيات الحديثة . 1557م أدخل روبرت ركورد إشارة المساواة (=) في الرياضيات معتقدًا أنه لا يوجد شيء يمكن أن يكون أكثر مساواة من زوج من الخطوط المتوازية . 1614م نشر جون نابيير اكتشافه في اللوغاريتمات، التي تساعد في تبسيط الحسابات . 1637م نشر رِينيه ديكارت اكتشافه في الهندسة التحليلية، مقررًا أن الرياضيات هي النموذج الأمثل للتعليل . منتصف العقد التاسع للقرن السابع عشرالميلادي. نشر كل من السير إسحق نيوتن وجوتفريد ولهلم ليبنتز بصورة مستقلة اكتشافاتهما في حساب التفاضل والتكامل . 1717م قام أبراهام شارب بحساب قيمة النسبة التقريبية حتى 72 منزلة عشرية . 1742م وضع كريستين جولدباخ ما عُرف بحدسية جولدباخ: وهو أنّ كلّ عدد زوجي هو مجموع عددين أوليين. ولا تزال هذه الجملة مفتوحة لعلماء الرياضيات لإثبات صحّتها أو خطئها . 1763م أدخل جسبارت مونيي الهندسة الوصفية وقد كان حتى عام 1795م يعمل في الاستخبارات العسكرية الفرنسية . بداية القرن التاسع عشر الميلادي. عمل علماء الرياضيات كارل فريدريك جوس ويانوس بولْياي، نقولا لوباشيفسكي، وبشكل مستقل على تطوير هندسات لا إقليدية . بداية العقد الثالث من القرن التاسع عشر. بدأ تشَارْلْز بَبَاج في تطوير الآلات الحاسبة . 1822م أدخل جين بابتست فورييهٌْ تحليل فورييه . 1829م أدخل إفاريست جالوا نظرية الزمر . 1854م نشر جورج بولي نظامه في المنطق الرمزي . 1881م أدخل جوشياه وِيلارد جبس تحليل المتجهات في ثلاثة أبعاد . أواخر القرن التاسع عشر الميلادي. طور جورج كانتور نظرية المجموعات والنظرية الرياضية للمالانهاية . 1908م طور إرنست زيرميلو طريقة المسلمات لنظرية المجموعات مستخدمًا عبارتين غير معروفتين وسبع مسلمات . 1910-1913م نشر أَلفرد نورث وايتهيد وبرتراند رسِل كتابهما مبادئ الرياضيات وجادلا فيه أنّ كل الفرضيات الرياضية يمكن استنباطها من عدد قليل من المسلمات . 1912م بدأ ل. ي. ج. برلور الحركة الحدسية في الرياضيات باعتبار الأعداد الطبيعية الأساس في البنية الرياضية التي يمكن إدراكها حدسيًا . 1921م نشر إيمي نوذر طريقة المسلمات للجبر . بداية الثلاثينيات من القرن العشرين الميلادي. أثبت كورت جودل أن أي نظام من المسلمات يحوي جملاً لا يمكن إثباتها . 1937م قدم أَلانْ تُورنْج وصفًا لــ " آلة تَورنج " وهي حاسوب آلي تخيلي يمكن أن يقوم بحل جميع المسائل ذات الصبغة الحسابية . مع نهاية الخمسينيات وعام 1960م دَخَلت الرياضيات الحديثة إلى المدارس في عدة دول . 1974م طور روجر بنروز تبليطة مكونة من نوعين من المعينات غير متكررة الأنماط. واكتشف فيما بعد أن هذه التبليطات التي تدعي تبليطات بنروز تعكس بنية نوع جديد من المادة المتبلورة وشبه المتبلورة . سبعينيات القرن العشرين ظهرت الحواسيب المبنية على أسس رياضية، واستخدمت في التجارة والصناعة والعلوم . 1980م بحث عدد من علماء الرياضيات المنحنيات الفراكتلية، وهي بنية يمكن استخدامها لتمثيل الظاهرة الهيولية .
الإغريق والرومان . يعد علماء الإغريق أول من اكتشف الرياضيات البحتة بمعزل عن المسائل العملية. أدخل الإغريق الاستنتاج المنطقي والبرهان، وأحرزوا بذلك تقدمًا مهمًا من أجل الوصول إلى بناء نظرية رياضية منظمة . وتقليديًا يعد الفيلسوف طاليس أول من استخدم الاستنتاج في البرهان، وانصبَّ جل اهتمامه على الهندسة حوالي 600 ق.م . اكتشف الفيلسوف الإغريقي فيثاغورث، الذي عاش حوالي 550 ق.م.، طبيعة الأعداد، واعتقد أن كل شيء يمكن فهمه بلغة الأعداد الكلية أو نسبها. بيد أنه في حوالي العام 400 ق.م. اكتشف الإغريق الأعداد غير القياسية (وهي الأعداد التي لا يمكن التعبير عنها كنسبة لعددين كليين)، وأدركوا أن أفكار فيثاغورث لم تكن متكاملة. وفي حوالي 370 ق.م. صاغ الفلكي الإغريقي يودوكسوس أوف كنيدوس نظرية بالأعداد غير القياسية وطوّر طريقة الاستنفاد، وهي طريقة لتحديد مساحة المنطقة المحصورة بين المنحنيات، مهدت لحساب التكامل .وفي حوالي 300 ق.م قام إقليدس ـ أحد أبرز علماء الرياضيات الأغريق ـ بتأليف كتاب العناصر، إذ أقام نظامًا للهندسة مبنيًا على التعاريف التجريدية والاستنتاج الرياضي. وخلال القرن الثالث قبل الميلاد عمَّم عالم الرياضيات الإغريقي أرخميدس طريقة الاستنفاد، مستخدمًا مضلعًا من 96 ضلعًا لتعريف الدائرة، حيث أوجد قيمة عالية الدقة للنسبة التقريبية باي (وهي النسبة بين محيط الدائرة وقطرها). وفي حوالي العام 150 ق.م. استخدم الفلكي الإغريقي بطليموس الهندسة وحساب المثلثات في الفلك لدراسة حركة الكواكب، وتمّ هذا في أعماله المكونة من 13 جزءًا. عرفت فيما بعد بالمجسطي أي الأعظم .وأظهر الرومان اهتمامًا ضئيلاً بالرياضيات البحتة، غير أنهم استخدموا المبادئ الرياضية في مجالات كالتجارة والهندسة وشؤون الحرب .
الرياضيات عند العرب . قام علماء العرب المسلمون بترجمة وحفظ أعمال قدامى الإغريق من علماء الرياضيات بالإضافة إلى إسهاماتهم المبتكرة .وألف عالم الرياضيات العربي الخوارزمي كتابًا حوالي عام 210هـ، 825م، وصف فيه نظام العد اللفظي المطور في الهند. وقد استخدم هذا النظام العشري قيمًا للمنزلة وكذلك الصفر، وأصبح معروفًا بالنظام العددي الهندي ـ العربي كما ألف الخوارزمي كذلك كتابًا قيمًا في الجبر بعنوان كتاب الجبر والمقابلة، وأخذت الكلمة الإنجليزية من عنوان هذا الكتاب .وفي منتصف القرن الثاني عشر الميلادي أدخل النظام العددي الهندي ـ العربي إلى أوروبا نتيجة ترجمة كتاب الخوارزمي في الحساب إلى اللاتينية. ونشر الرياضي الإيطالي ليوناردو فيبوناتشي عام 1202م كتابًا في الجبر عزز من مكانة هذا النظام. وحل هذا النظام تدريجيًا محل الأعداد الرومانية في أوروبا .وقدم فلكيو العرب في القرن الرابع الهجري، العاشر الميلادي إسهامات رئيسية في حساب المثلثات. واستخدم الفيزيائي العربي المسلم الحسن بن الهيثم أبو علي خلال القرن الحادي عشر للميلاد الهندسة في دراسة الضوء. وفي بداية القرن الثاني عشر الميلادي ألف الشاعر والفلكي الفارسي عمر الخيام كتابًا هامًا في الجبر. ووضع عالم الرياضيات الفارسي نصير الدين الطوسي في القرن الثالث عشر الميلادي نموذجًا رياضيًا إبداعيًا يستخدم في الفلك. انظر : العلوم عند العرب والمسلمين (الرِّياضيات ).
عصر النهضة الأوروبية . بدأ المكتشفون الأوروبيون في القرنين الخامس عشر والسادس عشر البحث عن خطوط تجارية جديدة لما وراء البحار مما أدى إلى تطبيق الرياضيات في التجارة والملاحة، ولعبت الرياضيات كذلك دورًا في الإبداع الفني، فطبق فنانو عصر النهضة مبادئ الهندسة وابتدعوا نظام الرسم المنظوري الخطي الذي أضفى الخداع في العمق والمسافة على لوحاتهم الفنية، وكان لاختراع الطباعة الآلية في منتصف القرن الرابع عشر الميلادي أثر كبير في سرعة انتشار وإيصال المعلومات الرياضية. وواكب عصر النهضة الأوروبية كذلك تطور رئيسي في الرياضيات البحتة. ففي عام 1533م نشر عالم رياضيات ألماني اسمه ريجيومانتانوس كتابًا حقق فيه استقلالية الهندسة كمجال منفصل عن الفلك. وحقق عالم الرياضيات الفرنسي فرانسوا فييت تقدمًا في الجبر، وظهر هذا في كتابه الذي نشر عام 1591م .
الرياضيات والثورة العلمية . مع حلول القرن السابع عشر، ساهم ازدياد استخدام الرياضيات ونماء الطريقة التجريبية في إحداث تغيير جذري في تقدم المعرفة، ففي العام 1543م ألف الفلكي اليولوني نيكولاس كوبرنيكوس كتابًا قيمًا في الفلك بين فيه أن الشمس ـ وليست الأرض ـ هي مركز الكون. وأحدث كتابه اهتمامًا متزايدًا في الرياضيات وتطبيقاتها. وعلى الأخص في دراسة حركة الأرض والكواكب الأخرى. وفي عام 1614م نشر عالم الرياضيات الأسكتلندي جون نابـيير اكتشافه للوغاريتمات وهي أعداد تستخدم لتبسيط الحسابات المعقدة كتلك المستخدمة في الفلك. ووجد الفلكي الإيطالي جاليليو ـ الذي عاش في نهاية القرن السادس عشر وبداية القرن السابع عشر ـ أنه يمكن دراسة أنواع كثيرة لحركة الكواكب رياضيًا .وبين الفيلسوف الفرنسي رينيه ديكارت في كتابه الذي نشر عام 1637م، أن الرياضيات هي النموذج الأمثل للتعليل، وأوضح ابتكاره للهندسة التحليلية مقدار الدقة واليقين اللذين تزودنا بهما الرياضيات .وأسس الرياضي الفرنسي بيير دو فيرما، وهو أحد علماء القرن السابع عشر، نظرية الأعداد الحديثة. كما اكتشف مع الفيلسوف الفرنسي بليس باسكال نظرية الاحتمالات . وساعد عمل فيرما في الكميات المتناهية الصغر إلى وضع أساس حساب التفاضل والتكامل .وفي منتصف القرن السابع عشر الميلادي اكتشف العلاّمة الإنجليزي السير إسحق نيوتن حساب التفاضل والتكامل. وكانت أول إشارة إلى اكتشافه هذا في الكتاب الذي نشر عام 1687م. واكتشف الرياضي والفيلسوف الألماني غوتفرين فلهلم لايبنين ـ كذلك وبشكل مستقل ـ حساب التفاضل والتكامل في منتصف عام 1670م، ونشر اكتشافاته ما بين 1684م و 1686م .
التطورات في القرن الثامن عشر الميلادي . خلال أواخر القرن السابع عشر ومطلع القرن الثامن عشر قدمت عائلة برنولي ـ وهي عائلة سويسرية شهيرة ـ إسهامات عديدة في الرياضيات. فقد قدم جاكوب برنولي عملاً رائدًا في الهندسة التحليلية، وكتب كذلك حول نظرية الاحتمالات. وعمل أخوه جوهان كذلك في الهندسة التحليلية، والفلك الرياضي والفيزياء. وساهم نقولا بن يوهان في تقدم نظرية الاحتمالات، واستخدم دانيال بن يوهان الرياضيات لدراسة حركة الموائع وخواص اهتزاز الأوتار .وخلال منتصف القرن الثامن عشر طور الرياضي السويسري ليونارد أْويلر حساب التفاضل والتكامل وبين أنّ عمليتي الاشتقاق والتكامل عكسيتان. وبدأ عالم الرياضيات الفرنسي جَوزِيفْ لاجْرانْجْ في نهاية القرن الثامن عشر العمل لتطوير حساب التفاضل والتكامل على أسس ثابتة، فطوّر حساب التفاضل والتكامل مستخدمًا في ذلك لغة الجبر بدلاً من الاعتماد على الفرضيات الهندسية التي كانت تساوره الشكوك حولها .
في القرن التاسع عشر . اتسع نطاق التعليم العام بسرعة كبيرة وأصبحت الرياضيات جزءًا أساسيًا في التعليم الجامعي. ونشرت معظم الأعمال المهمة لرياضيات القرن التاسع عشر كمراجع. وكتب الرياضي الفرنسي أَدريان ماري ليجندر في نهاية القرن الثامن عشر وبداية القرن التاسع عشر عدة مراجع مهمة، وبحث في حساب التفاضل والتكامل والهندسة ونظرية الأعداد. ونُشرت في الثلاثينيات من القرن التاسع عشر مراجع مهمة في حساب التفاضل والتكامل لعالم الرياضيات الفرنسي أوجستين لويس كوشي، وأحرز كوشي وعالم الرياضيات الفرنسي جين ببتيست فورييه تقدمًا هامًا في الفيزياء الرياضية. وأثبت عالم الرياضيات الألماني كارل فريدريك جاوس النظرية الأساسية في الجبر، ونصها: أن لكل معادلة جذرًا واحدًا في الأقل. وأدت أعماله في الأعداد المركبة إلى ازدياد تقبلها. وطور جاوس في العشرينيات من القرن التاسع عشر هندسة لا إقليدية ولكنه لم ينشر اكتشافاته هذه، كما طور الهنغاري يانوس بولياي، والروسي نيكولاي لوباشفيسكي وبشكل مستقل ـ هندسات لا إقليدية. ونشرا اكتشافاتهما هذه نحو عام 1830م وطور الألماني جورج فريدريك ريمان في منتصف القرن التاسع عشر هندسة لا إقليدية أخرى .ومع مطلع القرن التاسع عشر ساهمت أعمال عالم الرياضيات الألماني أوجست فرديناند ميبس في تطوير دراسة الهندسة، وسميت فيما بعد الطوبولوجيا التي تعنى بدراسة خواص الأشكال الهندسية التي لا تتغير بالثني أو المد. انظر : الطوبولوجيا .وفي أواخر القرن التاسع عشر عمل عالم الرياضيات الألماني كَارْلْ ثُيُودورْ فَيْسْتْراس على وضع أسس نظرية متينة لحساب التفاضل والتكامل. وطوّر تلميذه جُورْجْ كانتور في العقدين الثامن والتاسع من القرن التاسع عشر نظرية المجموعات ونظرية رياضية للمالانهاية. أُنْجِزَ معظم العمل في الرياضيات التطبيقية في القرن التاسع عشر، في بريطانيا حيث طوْر تشَارْلْزْ بايبج الآلة الحاسبة البدائية. ووضع جورج بولي نظامًا في المنطق الرمزي. وقدم عالم الرياضيات الفرنسي جُولْ هنْري بوانكاريه خلال نهاية القرن التاسع عشر إسهامات في نظرية الأعداد والميكانيكا السماوية والطوبولوجيا ودراسة الموجات الكهرومغنطيسية . اهتماماتهم بالأساسيات الفلسفية للرياضيات. واستخدم بعض علماء الرياضيات المنطق للتخلص من التناقضات، ولتطوير الرياضيات من مجموعة من المسلمات (وهي جمل أساسية تعد صائبة ).
أنشأ الفيلسوفان وعالما الرياضيات البريطانيان أَلفرد نورث وايتهد، وبرتراند راسل فلسفة للرياضيات تدعى المنطقية . وفي عملهما المشترك مبادئ الرياضيات (1910-1913م)، المكون من ثلاثة أجزاء، رأوا أن فرضيات جمل الرياضيات يمكن استنباطها من عدد قليل من المسلَّمات .وكان عالم الرياضيات الألماني ديفيد هلبرت الذي عاش في بداية القرن العشرين منهجيًا . ويعتبر المنهجيون الرياضيات نظامًا منهجيًا بحتًا من القوانين . وقاد عمل هلبرت إلى دراسة الفضاءات المركبة ذات الأبعاد غير المنتهية .وقاد عالم الرياضيات الهولندي ليوتسن براور ـ في بداية القرن العشرين ـ مذهب الحدْسية، واعتقد أن الناس يمكنهم فهم قوانين الرياضيات بالحدْس (المعرفة التي لا يحصل عليها بالتعليل أو التجربة ).وفي الأربعينيات من القرن العشرين برهن عالم الرياضيات النمساوي كورت جودل أنه يوجد في أي نظام منطقي نظريات لا يمكن إثبات أنها صائبة أو خاطئة بمسلمات ذلك النظام فقط. ووجد أنّ هذا صحيح حتى في مفاهيم الحساب الأساسية .ثم خطا علماء الرياضيات خلال القرن العشرين خطوات رئيسية في دراسة البنى الرياضية التجريدية. وإحدى هذه البنى الزُّمرة، التي هي تجمُّع لعناصر، قد تكون أعدادًا، وقواعد لعملية ما على هذه العناصر، كالجمع أو الضرب. ونظرية الزمرة مفيدة في مناطق عدة في الرياضيات ومجالات مثل فيزياء الجسيمات الصغيرة .ومنذ عام 1939م قامت مجموعة من علماء الرياضيات أغلبها من الفرنسيين بنشر سلسلة من الكتب القيمة تحت اسم نقولا بورباكي. واّخذت هذه السلسلة المنحى التجريدي باستخدامها نظام المُسلَّمات ونظرية المجموعات .وخلال القرن العشرين برزت مجالات رياضية تخصصية جديدة شملت النظم التحليلية، وعلم الحاسوب وكان تقدم علم المنطق أساسًا لتقدم الحاسبات الكهربائية. وفي المقابل، تمكن علماء الرياضيات بفضل الحاسوب من استكمال الحسابات المعقدة بسرعة فائقة. ومنذ الثمانينيات من القرن العشرين شاع استخدام الحواسيب المبنية على النماذج الرياضية لدراسة حالة الطقس والعلاقات الاقتصادية ونظم عديدة أخرى .
الاتجاهات في تدريس الرياضيات . قبل الخمسينيات من القرن العشرين الميلادي، ركزت معظم مقررات الرياضيات في المدارس في عدة بلدان على تطوير المهارات الحسابية الأساسية. وأُدخلت الرياضيات الحديثة خلال نهاية الخمسينيات والستينيات من القرن العشرين. والرياضيات الحديثة طريقة لتعلم الرياضيات تركز على استيعاب المفاهيم الرياضية لا على حفظ القواعد والأداء المتكرر للتدريبات. وفي السبعينيات والثمانينيات من القرن العشرين استمر القائمون على التعليم في استخدام الرياضيات الحديثة مع الإضافة والتركيز على حلّ المسائل والمهارات الحسابية .ولم تَعُد الجامعات تُدرس الرياضيات لجميع الطلاب بالأسلوب نفسه. وبدلأً من ذلك، بدأت الكليات والجامعات تقدم مقررات تخصصية ذات صبغة تطبيقية للرياضيات في مجالات كالاقتصاد والهندسة والفيزياء .
الاشتراك في:
التعليقات (Atom)